《浙江高考數(shù)學(xué)二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題5 突破點(diǎn)12 圓錐曲線的定義、方程、幾何性質(zhì) Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《浙江高考數(shù)學(xué)二輪復(fù)習(xí)教師用書:第1部分 重點(diǎn)強(qiáng)化專題 專題5 突破點(diǎn)12 圓錐曲線的定義、方程、幾何性質(zhì) Word版含答案(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
突破點(diǎn)12
圓錐曲線的定義、方程、幾何性質(zhì)
(對應(yīng)學(xué)生用書第44頁)
[核心知識提煉]
提煉1圓錐曲線的定義
(1)橢圓:|PF1|+|PF2|=2a(2a>|F1F2|).
(2)雙曲線:||PF1|-|PF2||=2a(2a<|F1F2|).
(3)拋物線:|PF|=|PM|,點(diǎn)F不在直線l上,PM⊥l于M(l為拋物線的準(zhǔn)線).
提煉2 圓錐曲線的重要性質(zhì)
(1)橢圓、雙曲線中a,b,c之間的關(guān)系
①在橢圓中:a2=b2+c2;離心率為e==;
2、
②在雙曲線中:c2=a2+b2;離心率為e==.
(2)雙曲線的漸近線方程與焦點(diǎn)坐標(biāo)
①雙曲線-=1(a>0,b>0)的漸近線方程為y=x;焦點(diǎn)坐標(biāo)F1(-c,0),F(xiàn)2(c,0);
②雙曲線-=1(a>0,b>0)的漸近線方程為y=x,焦點(diǎn)坐標(biāo)F1(0,-c),F(xiàn)2(0,c).
(3)拋物線的焦點(diǎn)坐標(biāo)與準(zhǔn)線方程
①拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為x=?;
②拋物線x2=2py(p>0)的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為y=?.
提煉3弦長問題
(1)直線與圓錐曲線相交時的弦長
斜率為k的直線與圓錐曲線交于點(diǎn)A(x1,y1),B(x2,y2)時
3、,|AB|=|x1-x2|=或|AB|=|y1-y2|=.
(2)拋物線焦點(diǎn)弦的幾個常用結(jié)論
設(shè)AB是過拋物線y2=2px(p>0)焦點(diǎn)F的弦,若A(x1,y1),B(x2,y2),則①x1x2=,y1y2=-p2;②弦長|AB|=x1+x2+p=(α為弦AB的傾斜角);③+=;④以弦AB為直徑的圓與準(zhǔn)線相切.
[高考真題回訪]
回訪1 橢圓及其性質(zhì)
1.(20xx浙江高考)橢圓+=1的離心率是( )
A. B.
C. D.
B [∵橢圓方程為+=1,
∴a=3,c===.
∴e==.
故選B.]
2.(20xx浙江高考)已知橢圓C1:+y2=1(m
4、>1)與雙曲線C2:-y2=1(n>0)的焦點(diǎn)重合,e1,e2分別為C1,C2的離心率,則( )
A.m>n且e1e2>1 B.m>n且e1e2<1
C.m1 D.mn2.
∵m>1,n>0,∴m>n.
∵C1的離心率e1=,C2的離心率e2=,
∴e1e2=
==
==>=1.]
3.(20xx浙江高考)橢圓+=1(a>b>0)的右焦點(diǎn)F(c,0)關(guān)于直線y=x的對稱點(diǎn)Q在橢圓上,則橢圓的離
5、心率是________.
[設(shè)橢圓的另一個焦點(diǎn)為F1(-c,0),如圖,連接QF1,QF,設(shè)QF與直線y=x交于點(diǎn)M.
由題意知M為線段QF的中點(diǎn),且OM⊥FQ.
又O為線段F1F的中點(diǎn),
∴F1Q∥OM,
∴F1Q⊥QF,|F1Q|=2|OM|.
在Rt△MOF中,tan∠MOF==,|OF|=c,
可解得|OM|=,|MF|=,
故|QF|=2|MF|=,|QF1|=2|OM|=.
由橢圓的定義得|QF|+|QF1|=+=2a,
整理得b=c,∴a==c,
故e==.]
4.(20xx浙江高考)如圖121,設(shè)橢圓C:+=1(a>b>0),
6、動直線l與橢圓C只有一個公共點(diǎn)P,且點(diǎn)P在第一象限.
圖121
(1)已知直線l的斜率為k,用a,b,k表示點(diǎn)P的坐標(biāo);
(2)若過原點(diǎn)O的直線l1與l垂直,證明:點(diǎn)P到直線l1的距離的最大值為a-b.
[解] (1)設(shè)直線l的方程為y=kx+m(k<0),由消去y,得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0. 2分
由于l與橢圓C只有一個公共點(diǎn),故Δ=0,即b2-m2+a2k2=0,解得點(diǎn)P的坐標(biāo)為. 4分
又點(diǎn)P在第一象限,
故點(diǎn)P的坐標(biāo)為. 6分
(2)證明:由于直線l1過原點(diǎn)O且與l垂直,故直線l1的方程為x+ky=0,所以點(diǎn)P
7、到直線l1的距離
d=, 8分
整理,得d=. 10分
因?yàn)閍2k2+≥2ab,
所以≤=a-b, 12分
當(dāng)且僅當(dāng)k2=時等號成立.
所以,點(diǎn)P到直線l1的距離的最大值為a-b. 15分
回訪2 雙曲線及其性質(zhì)
5.(20xx浙江高考)設(shè)雙曲線x2-=1的左、右焦點(diǎn)分別為F1,F(xiàn)2.若點(diǎn)P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是________.
(2,8) [∵雙曲線x2-=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線上,∴|F1F2|=4,||PF1|-|PF2||=2.若△F1PF2為銳角三角形,則由余弦定理知|P
8、F1|2+|PF2|2-16>0,可化為(|PF1|+|PF2|)2-2|PF1||PF2|>16①.由||PF1|-|PF2||=2,得(|PF1|+|PF2|)2-4|PF1||PF2|=4.故2|PF1||PF2|=,代入不等式①可得(|PF1|+|PF2|)2>28,解得|PF1|+|PF2|>2.不妨設(shè)P在左支上,∵|PF1|2+16-|PF2|2>0,即(|PF1|+|PF2|)(|PF1|-|PF2|)>-16,又|PF1|-|PF2|=-2,
∴|PF1|+|PF2|<8.故2<|PF1|+|PF2|<8.]
6.(20xx浙江高考)雙曲線-y2=1的焦距是_______
9、_,漸近線方程是________.
2 y=x [由雙曲線標(biāo)準(zhǔn)方程,知雙曲線焦點(diǎn)在x軸上,且a2=2,b2=1,∴c2=a2+b2=3,即c=,∴焦距2c=2,漸近線方程為y=x,即y=x.]
7.(20xx浙江高考)設(shè)直線x-3y+m=0(m≠0)與雙曲線-=1(a>0,b>0)的兩條漸近線分別交于點(diǎn)A,B.若點(diǎn)P(m,0)滿足|PA|=|PB|,則該雙曲線的離心率是________.
[雙曲線-=1的漸近線方程為y=x.
由得A,
由得B,
所以AB的中點(diǎn)C坐標(biāo)為.
設(shè)直線l:x-3y+m=0(m≠0),
因?yàn)閨PA|=|PB|,所以PC⊥l,
所以kP
10、C=-3,化簡得a2=4b2.
在雙曲線中,c2=a2+b2=5b2,所以e==.]
回訪3 拋物線及其性質(zhì)
8.(20xx浙江高考)如圖122,設(shè)拋物線y2=4x的焦點(diǎn)為F,不經(jīng)過焦點(diǎn)的直線上有三個不同的點(diǎn)A,B,C,其中點(diǎn)A,B在拋物線上,點(diǎn)C在y軸上,則△BCF與△ACF的面積之比是( )
圖122
A. B.
C. D.
A [由圖形可知,△BCF與△ACF有公共的頂點(diǎn)F,且A,B,C三點(diǎn)共線,易知△BCF與△ACF的面積之比就等于.由拋物線方程知焦點(diǎn)F(1,0),作準(zhǔn)線l,則l的方程為x=-1.∵點(diǎn)A,B在拋物線上,過A,B分別作AK,BH與準(zhǔn)線垂直,垂足
11、分別為點(diǎn)K,H,且與y軸分別交于點(diǎn)N,M.由拋物線定義,得|BM|=|BF|-1,|AN|=|AF|-1.在△CAN中,BM∥AN,∴==.]
9.(20xx浙江高考)若拋物線y2=4x上的點(diǎn)M到焦點(diǎn)的距離為10,則M點(diǎn)到y(tǒng)軸的距離是________.
9 [設(shè)點(diǎn)M的橫坐標(biāo)為x,則點(diǎn)M到準(zhǔn)線x=-1的距離為x+1,由拋物線的定義知x+1=10,∴x=9,
∴點(diǎn)M到y(tǒng)軸的距離為9.]
10.(20xx浙江高考)如圖123,設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,拋物線上的點(diǎn)A到y(tǒng)軸的距離等于|AF|-1.
(1)求p的值;
(2)若直線AF交拋物線于另一點(diǎn)B,過B與x軸
12、平行的直線和過F與AB垂直的直線交于點(diǎn)N,AN與x軸交于點(diǎn)M,求M的橫坐標(biāo)的取值范圍.
[解] (1)由題意可得,拋物線上點(diǎn)A到焦點(diǎn)F的距離等于點(diǎn)A到直線x=-1的距離, 2分
由拋物線的定義得=1,即p=2. 4分
(2)由(1)得,拋物線方程為y2=4x,F(xiàn)(1,0),可設(shè)A(t2,2t),t≠0,t≠1.
因?yàn)锳F不垂直于y軸,可設(shè)直線AF:x=sy+1(s≠0),
由消去x得y2-4sy-4=0, 6分
故y1y2=-4,所以B. 7分
又直線AB的斜率為,故直線FN的斜率為-,從而得直線FN:y=-(x-1),直線BN:y=-,所以N. 8分
設(shè)
13、M(m,0),由A,M,N三點(diǎn)共線得=,
于是m==2+, 11分
所以m<0或m>2.
經(jīng)檢驗(yàn),m<0或m>2滿足題意.
綜上,點(diǎn)M的橫坐標(biāo)的取值范圍是(-∞,0)∪(2,+∞). 15分
(對應(yīng)學(xué)生用書第46頁)
熱點(diǎn)題型1 圓錐曲線的定義、標(biāo)準(zhǔn)方程
題型分析:圓錐曲線的定義、標(biāo)準(zhǔn)方程是高考??純?nèi)容,主要以選擇、填空的形式考查,解題時分兩步走:第一步,依定義定“型”,第二步,待定系數(shù)法求“值”.
【例1】 (1)已知方程-=1表示雙曲線,且該雙曲線兩焦點(diǎn)間的距離為4,則n的取值范圍是( ) 【導(dǎo)學(xué)號:68334125】
A.(-1,3) B.(-1,
14、)
C.(0,3) D.(0,)
(2)已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與C的一個交點(diǎn),若=4,則|QF|=( )
A. B.3
C. D.2
(1)A (2)B [(1)若雙曲線的焦點(diǎn)在x軸上,則
又∵(m2+n)+(3m2-n)=4,∴m2=1,∴
∴-13m2且n<-m2,此時n不存在.故選A.
(2)如圖所示,因?yàn)椋?,所以=,過點(diǎn)Q作QM⊥l垂足為M,則MQ∥x軸,
所以==,所以|MQ|=3,由
15、拋物線定義知|QF|=|QM|=3.]
[方法指津]
求解圓錐曲線標(biāo)準(zhǔn)方程的方法是“先定型,后計算”
1.定型,就是指定類型,也就是確定圓錐曲線的焦點(diǎn)位置,從而設(shè)出標(biāo)準(zhǔn)方程.
2.計算,即利用待定系數(shù)法求出方程中的a2,b2或p.另外,當(dāng)焦點(diǎn)位置無法確定時,拋物線常設(shè)為y2=2ax或x2=2ay(a≠0),橢圓常設(shè)mx2+ny2=1(m>0,n>0),雙曲線常設(shè)為mx2-ny2=1(mn>0).
[變式訓(xùn)練1] (1)經(jīng)過點(diǎn)(2,1),且漸近線與圓x2+(y-2)2=1相切的雙曲線的標(biāo)準(zhǔn)方程為( )
A.-=1 B.-y2=1
C.-=1 D.-=1
(2)(20xx金
16、華十校第一學(xué)期調(diào)研)已知拋物線C:y2=2px(p>0),O為坐標(biāo)原點(diǎn),F(xiàn)為其焦點(diǎn),準(zhǔn)線與x軸交點(diǎn)為E,P為拋物線上任意一點(diǎn),則( )
圖124
A.有最小值 B.有最小值1
C.無最小值 D.最小值與p有關(guān)
(1)A (2)A [(1)設(shè)雙曲線的漸近線方程為y=kx,即kx-y=0,由題意知=1,解得k=,則雙曲線的焦點(diǎn)在x軸上,設(shè)雙曲線方程為-=1,
則有解得故選A.
(2)過點(diǎn)P作PF′垂直于準(zhǔn)線交準(zhǔn)線于F′.設(shè)P,故|PF′|=+,|EF′|=y(tǒng),因?yàn)椋健?,此時有最小值,故選A.]
熱點(diǎn)題型2 圓錐曲線的幾何性質(zhì)
題型分析:圓錐曲線的幾何性質(zhì)是高考考查
17、的重點(diǎn)和熱點(diǎn),其中求圓錐曲線的離心率是最熱門的考點(diǎn)之一,建立關(guān)于a,c的方程或不等式是求解的關(guān)鍵.
【例2】 (1)已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓C:+=1(a>b>0)的左焦點(diǎn),A,B分別為C的左、右頂點(diǎn).P為C上一點(diǎn),且PF⊥x軸.過點(diǎn)A的直線l與線段PF交于點(diǎn)M,與y軸交于點(diǎn)E.若直線BM經(jīng)過OE的中點(diǎn),則C的離心率為( )
A. B.
C. D.
(2)(20xx杭州第二次質(zhì)檢)設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)A,B在拋物線上,且∠AFB=120,弦AB的中點(diǎn)M在準(zhǔn)線l上的射影為M1,則的最大值為________.
(1)A (2) [(
18、1)如圖所示,由題意得A(-a,0),B(a,0),F(xiàn)(-c,0).由PF⊥x軸得P.
設(shè)E(0,m),又PF∥OE,得=,
則|MF|=. ①
又由OE∥MF,得=,
則|MF|=. ②
由①②得a-c=(a+c),即a=3c,所以e==.
故選A.
(2)如圖所示,由拋物線的定義以及梯形的中位線定理得|MM1|=,在△ABF中,由余弦定理得|AB|2=|AF|2+|BF|2-2|AF||BF|cos =|AF|2+|BF|2+|AF||BF|=(|AF|+|BF|)2-|AF||BF|≥(|AF|+|BF|)2-2=3|MM1|2,當(dāng)且僅當(dāng)|AF|=|B
19、F|時,等號成立,故取得最大值.]
[方法指津]
1.求橢圓、雙曲線離心率(離心率范圍)的方法
求橢圓、雙曲線的離心率或離心率的范圍,關(guān)鍵是根據(jù)已知條件確定a,b,c的等量關(guān)系或不等關(guān)系,然后把b用a,c代換,求的值.
2.雙曲線的漸近線的求法及用法
(1)求法:把雙曲線標(biāo)準(zhǔn)方程等號右邊的1改為零,分解因式可得.
(2)用法:①可得或的值.
②利用漸近線方程設(shè)所求雙曲線的方程.
[變式訓(xùn)練2] (1)已知F1,F(xiàn)2是雙曲線E:-=1的左,右焦點(diǎn),點(diǎn)M在E上,MF1與x軸垂直,sin∠MF2F1=,則E的離心率為( )
A. B.
C. D.
20、2
(2)(名師押題)已知橢圓+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F2的直線與橢圓交于A,B兩點(diǎn),若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,則橢圓的離心率為( ) 【導(dǎo)學(xué)號:68334126】
A. B.2-
C.-2 D.-
(1)A (2)D [(1)法一:如圖,因?yàn)镸F1與x軸垂直,所以|MF1|=.又sin∠MF2F1=,所以=,
即|MF2|=3|MF1|.由雙曲線的定義得2a=|MF2|-|MF1|=2|MF1|=,所以b2=a2,所以c2=b2+a2=2a2,所以離心率e==.
法二:如圖,因?yàn)镸F1⊥x軸,所以|MF1|=.
21、在Rt△MF1F2中,由sin∠MF2F1=得
tan∠MF2F1=.
所以=,即=,即=,
整理得c2-ac-a2=0,
兩邊同除以a2得e2-e-1=0.
解得e=(負(fù)值舍去).
(2)設(shè)|F1F2|=2c,|AF1|=m,
若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,
∴|AB|=|AF1|=m,|BF1|=m.
由橢圓的定義可知△F1AB的周長為4a,
∴4a=2m+m,m=2(2-)a.
∴|AF2|=2a-m=(2-2)a.
∵|AF1|2+|AF2|2=|F1F2|2,
∴4(2-)2a2+4(-1)2a2=4c2,
∴e2=9-6,e=-.]