某混凝土泵車泵送系統(tǒng)設計
某混凝土泵車泵送系統(tǒng)設計,混凝土泵,車泵送,系統(tǒng),設計
畢業(yè)設計(論文)開題報告
題目: 某混凝土泵車泵送系統(tǒng)設計
2018年12月10日
1. 畢業(yè)設計(論文)綜述(題目背景、研究意義及國內(nèi)外相關研究情況)
隨著我國基礎設施建設、礦山、房地產(chǎn)項目等的大力進行,混凝土的澆注量、澆注高度、澆注速度要求越來越高?;炷帘密嚤盟拖到y(tǒng)廣泛應用于建筑業(yè)中的混凝土輸送,特別是大型施工工地輸送混凝土作業(yè),可大大減少由人工運送造成的繁重的體力勞動,極大地提高了工作效率。隨著大型施工的興起,對混凝土的攪拌運輸,要求實現(xiàn)機械化的需要,液壓技術的應用在混凝土輸送機械化的實現(xiàn)過程中起到了重要的作用。混凝土泵車泵送系統(tǒng)正是基于以上要求應運而生。要求愈加“苛刻”,對混凝土泵車泵送系統(tǒng)的各項參數(shù)要求也越來越高,泵送能力是混泥土輸送泵的主要參數(shù),泵送系統(tǒng)的優(yōu)劣直接決定混凝土泵車泵送系統(tǒng)的性能。
在混凝土工程施工過程中,混凝土機械需求量很大,廣泛應用于工業(yè)、建筑業(yè)以及國防施工等工程建設中。在工業(yè)發(fā)達國家混凝土機械生產(chǎn)的先進程度標志著一個國家制造業(yè)的水平。經(jīng)過幾十年的發(fā)展,我國混凝土機械己成為建設機械重要組成都分。尤其是混凝土行業(yè)不失時機地在1996年5月咸陽全國混凝土機械行業(yè)大會上提出了發(fā)展我國混凝土攪拌站(攪拌樓)、混凝土攪拌輸送車、混凝土泵車(包括混凝土泵)、散裝水泥運輸車的“一站三車”的戰(zhàn)略口號,加速了我國商品混凝土機械的發(fā)展。
在20世紀九十年代初期,我國混凝土機械的生產(chǎn)已初具規(guī)模,年產(chǎn)攪拌機為11—17萬臺、混凝土泵(包括臂架式混凝土泵車)約13—16萬臺左右、散裝水泥車約670臺左右。到20世紀末期,國產(chǎn)商品混凝土機械的市場占有率已達85%以上,其總量分布及產(chǎn)品增量情況大致如下:?
(1)混凝土泵銷售量。2005年混凝土泵生產(chǎn)排序為三一重工、中聯(lián)重科、山東方圓集團。?
(2)混凝土泵車銷售量。2008年總量為3000臺,年增長大約為106%。三一重工、中聯(lián)重科和普茨邁斯特公司分列銷售業(yè)績前三名。?
(3)混凝土泵車。2009年12家生產(chǎn)企業(yè)統(tǒng)計銷售量為2366萬臺,其中銷售量較大的有安徽星馬527臺,遼寧海諾425臺,上海華建371臺,唐山專用汽車制造廠368臺,徐州利勃梅爾混凝土機械有限公司297臺。2002年混凝土泵車銷售形勢大好,達3500余臺,其中上海華建年產(chǎn)800余臺,產(chǎn)銷都比上年度翻一番,創(chuàng)歷史記錄。?
(4)混凝土車銷售量。據(jù)2011年114家混凝土車生產(chǎn)企業(yè)的統(tǒng)計,銷售混凝土車1554臺,2012年混凝土車)總銷量約為1700—2750臺套。而據(jù)126家生產(chǎn)企業(yè)的統(tǒng)計,今年生產(chǎn)銷售混凝土車)12900臺套,由此可看出大型混凝土車增長勢頭強勁。? ? 混凝土機械的發(fā)展是伴隨商品混凝土需求而發(fā)展起來的;國外一些經(jīng)濟發(fā)達的國家,如美國、瑞典、日本等.商品混凝土的生產(chǎn)比重已經(jīng)占到90%以上。?
我國頒布的《散裝水泥發(fā)展“十五”規(guī)劃》發(fā)展目標要求.直轄市、省會城市、沿海開放城市和旅游城市要積極發(fā)展預拌混凝上;其他城市2005年底起,禁止在城區(qū)現(xiàn)場攪拌混凝土。攪拌混凝土生產(chǎn)能力可達到3億立方米,頂拌混凝土與混凝土澆筑總量的比例將達到20%.其中大小城市要達到50%以上。據(jù)統(tǒng)計,混凝土總供應能力約1.3億立方米。在今后3年時間里將要增加2億立方米的供應能力,這給混凝土機械行業(yè)提供了巨大的發(fā)展商機。?
1907年德國開始研究混凝土泵,并取得專利權,制造出第一臺混凝土泵;1927年德國的弗利茨.海爾設計了“—種新型混凝土泵,并第一次獲得應用:到1930年,德國又制造了立式單缸球網(wǎng)活塞泵:由于這種泵是靠曲柄和搖桿傳動,又是立式單缸。因而工作性能較差。其后德國的托克里特公司仿照了荷蘭人庫依曼在1932年發(fā)明的庫依曼型混凝土泵、這種泵有一個臥式缸及兩個由聯(lián)桿操縱聯(lián)動的旋轉閥.從而極大地提高了混凝土泵工作的可靠性。至今,混凝土泵仍然保留著這種設計的基本特點.只是在動力機構和閥門方向進行了改進。?
20世紀50年代中葉,前聯(lián)邦德國的托克里特公司發(fā)明了用水作為工作介質的液壓泵,這使混凝土泵進入了一個新的發(fā)展階段、1959年、前聯(lián)邦德國施維英公司生產(chǎn)第一臺真正意義上的全液壓的混凝土泵.從而奠定了現(xiàn)代混凝土泵的技術基礎。到20世紀70年代中期,前聯(lián)邦德國有7、8家公司生產(chǎn)液壓混凝土泵,規(guī)格型號超過50余種,產(chǎn)品大部分出口,混凝土泵的輸送距離已達水平距離為600m、垂直距離為如90—110m,泵送壓力最大達20MPa,輸送量為l10m3/h。由于液壓式混凝土泵在性能上顯露出明顯的優(yōu)勢,到了70年代末期全世界液壓混凝土泵,無論在品種、數(shù)量上部占據(jù)了優(yōu)勢。?
混凝土的輸送與澆鑄一直是人們研究的對象,也是一項關鍵性的工作,在不同的施工條件下,合理的選擇混凝土輸送方法和輸送設備,對加快工程速度,降低工程造價,提高勞動生產(chǎn)率,保證混凝土結構的質量等都有及其重要的意義。以往,對大型建筑物澆鑄混凝土,傳統(tǒng)的方法是采用吊斗,不斷發(fā)展的是采用升降機,起重機,皮帶運輸機等等,但是它們都存在著種種缺陷。混凝土泵是現(xiàn)在所有的混凝土輸送設備中比較理想的一種。它可以同時解決混凝土的水平和垂直運輸并且澆灌,用混凝土泵車泵送系統(tǒng)施工的優(yōu)點有:
?? (1)機械化程度高,需要的勞動力少,施工組織簡單??箟簭姸雀??;炷恋目箟簭姸纫话銥?0~40Mpa,有的可高達80~120 Mpa,適合做結構材料。
(2)混凝土的輸送和澆鑄作業(yè)是連續(xù)進行的,施工效率高,工作進度快。與鋼筋的共同工作性好。混凝土熱膨脹系數(shù)與鋼筋相近,受力特點可以互補,且與鋼筋的粘結力較強,可制成鋼筋混凝土,擴大應用范圍。
(3)蹦送工藝對混凝土質量要求比較嚴格,也可以說泵送是對混凝土質量的一種檢驗,又由于泵送是連續(xù)進行的,泵送中混凝土不易離析,混凝土塌落度不大,因此容易保證工程質量。
????(4)作業(yè)安全。
????(5)對施工作業(yè)面的適應性強,作業(yè)范圍廣,混凝土輸送管道可以鋪設到其他難以到達的地方,又能使混凝土在一定的壓力下充填澆鑄到位,還可以把泵串聯(lián)使用,以增大輸出距離,滿足個中施工要求。
????(6)與其它施工機械的相互干擾小。 耐久性好?;炷烈话悴恍枰S護、維修及保養(yǎng)。
(7)在正常泵送條件下,混凝土在管道中輸送不會污染環(huán)境,能實現(xiàn)文明施工。
? (8)在施工布置得當?shù)那闆r下,能夠降低工程造價。
2. 本課題研究的主要內(nèi)容和擬采用的研究方案、研究方法或措施
本課題主要內(nèi)容為混凝土泵車泵送系統(tǒng)設計,泵送系統(tǒng)的主要作用是將混凝土沿輸送管道連續(xù)輸送到澆筑現(xiàn)場,主要包括料斗、泵送機構、S閥總成、擺搖機構、攪拌機構、輸送管道。泵送系統(tǒng)主要參數(shù):泵送高度70m,壓力(低壓6.5Mpa,高壓12Mpa),排量(低壓220m3/h,高壓120 m3/h)。
研究方案:?
方案1:采用活塞式混凝土泵泵送系統(tǒng)?
活塞式混凝土泵是應用最早的一種混凝土泵產(chǎn)品。這種泵的泵送壓力較?高,輸送距離較遠,而且易于控制,所以應用最廣泛。
活塞式混凝土泵是靠?活塞在缸內(nèi)往復運動,在分配閥的配合下完成混凝土的吸入和排出。從傳動裝置上可分為:?
機械式,最早的混凝土泵采用曲柄活塞式,由動力裝置帶動曲柄活塞?(柱塞)往返運動將混凝土送出。隨液壓技術的發(fā)展已逐步被液壓式取代。
液壓式,根據(jù)液壓介質的不同又分為油壓式和水壓式兩種。水壓式目?前還不多見,所以通常稱為“液壓”的就是指油壓式混凝土泵。這種混凝土?泵功率大,震動小、排量大、運輸距離遠,可做到無極調(diào)節(jié),泵的活塞可逆?向動作,將輸送管中將要堵塞的混凝土拌合物吸回混凝土缸,以減少堵賽的可能性。
? 方案2:采用擠壓式混凝土泵送系統(tǒng)
擠壓式混凝土泵的作用原理與擠牙膏的過程相似。這種泵的泵室內(nèi)有橡?膠管和滾輪架,當滾輪架轉動時將橡膠管內(nèi)的混凝土壓出,它特別適宜于小石子混凝土急砂漿的泵送。?
1泵室 2橡膠軟管 3吸入管 4回轉滾輪 5導管 6料斗7滾輪架
圖2擠壓式混凝土泵送系統(tǒng)原理圖
方案3:采用壓縮空氣輸送罐泵送系統(tǒng)
它利用壓縮空氣對貯料罐內(nèi)混凝土吹壓,進行間斷輸送,壓縮空氣輸送罐的操作順序是:先打開罐的上蓋,裝入混凝土后再將上?蓋壓緊,打開氣閥向罐內(nèi)輸入壓縮空氣,當用于顯示罐內(nèi)壓力的壓力表達到?額定的壓力值時,關閉氣閥并開始送混凝土。壓送后將罐內(nèi)的剩余壓力全部?泄放掉,然后再打開上蓋,重復進行泵送。?
根據(jù)混凝土泵車泵送系統(tǒng)的移動方式又可以分為:固定式、拖掛式和自行式。?
(1)固定式? 就是固定式系原始式,多由電機驅動,適用于工程量較大、移動較少的場合。?
(2)拖掛式? 拖掛式混凝土泵是把泵安裝在帶有車輪的簡單底架上,既能在施工現(xiàn)場?方便地移動,又能在道路上拖運。?
(3)自行式?自行式混凝土泵是把泵安裝在汽車底盤上。
車載式混凝土泵移動方便,機動靈活,到新工作地點不需進?行準備即可進行澆筑?;炷帘密囀瞧嚒⒒炷帘眉安剂蠗U的組合體。機動性能好,可縮短施工的輔助時間,節(jié)省勞動力,提高生產(chǎn)率和降低工程成本。但受施工?現(xiàn)場工地條件和道路的限制。
通過以上對混凝土泵車泵送系統(tǒng)的方案比較以及對混凝土泵車泵送系統(tǒng)的移動方式的分類,采用液壓活塞式泵送系統(tǒng)。
混凝土泵車泵送系統(tǒng)設計-結構簡圖
3. 本課題研究的重點及難點,前期已開展工作
重點:保證液壓活塞式泵送系統(tǒng)各個結構之間的合理裝配。
難點:液壓活塞式泵送系統(tǒng)的三維設計,料斗、S閥總成、擺搖機構、攪拌機構、輸送管道等部件的設計與計算,泵送機構和零件結構的設計計算,以及各個過程參數(shù)的確定,繪制圖形。
已經(jīng)展開的工作:網(wǎng)上查閱有關書籍和資料,了解設計的大致方向,了解液壓活塞式泵送系統(tǒng)的大體結構和工作原理。
4. 完成本課題的工作方案及進度計劃
1、根據(jù)技術參數(shù)提出方案,繪制總圖1張;
2、根據(jù)總圖設計部件圖(包括料斗、泵送機構、S閥總成、擺搖機構、攪拌機構) 1套;
3、根據(jù)泵送流量計算并選擇泵送電機參數(shù)和型號(1套);
4、繪制潤滑系統(tǒng)原理圖;
5、畢業(yè)設計說明書1份(2萬字以上);
6、繪圖量為;3張(折合成A0號圖紙計算)以上。
① 實驗(時數(shù))或實習(天數(shù)):
② 圖紙(幅面和張數(shù)):繪圖量為3張(折合成A0號圖紙計算)以上
③ 其他要求:要求具備機械、結構設計和流體力學方面的知識。
進度計劃:
第一階段:完成論文綜述,方案確定,外文翻譯,畢業(yè)設計工作管理手冊及撰寫規(guī)范;
第二階段:完成中期報告,論文或設計內(nèi)容完成的基礎工作報告;
第三階段:完成液壓活塞式泵送系統(tǒng)設計方案的分析、選擇,完成液壓活塞式泵送系統(tǒng)的三維設計以及二維設計;
第四階段:總結設計過程,完成液壓活塞式泵送系統(tǒng)設計說明書初稿的撰寫;
第五階段:修改畢業(yè)設計及其說明書初稿,提交規(guī)定的與畢業(yè)設計相關的全部正式文件,準備與完成答辯。
5 指導教師意見(對課題的深度、廣度及工作量的意見)
指導教師: 年 月 日
6 所在系審查意見:
系主管領導: 年 月 日
參考文獻
[1] 陳宜通.混凝土機械[M].北京;中國建筑材料工業(yè)出版社,2012.6.
[2] 濮良貴,紀名剛.機械設計[M].北京;高等教育出版社,2011.5.
[3] 吳宗澤,羅圣國.機械設計課程設計手冊[M].北京;高等教育出版社,2009.5.
[4] 鐘漢華.混凝土工程施工機械設備使用指南[M].河北;黃河水利出版社,2009.9.
[5]《機械設計手冊》聯(lián)合編寫組編.機械設計手冊中冊[M]. 北京;化學工業(yè)出版社,2015.5.
[6] 楊寶.《混凝土泵系列發(fā)展的思路》。內(nèi)蒙古自治區(qū)自然科學學術年會優(yōu)秀論文集,2013.
[7] 宋紅堯,丁忠堯.《液壓閥設計與計算》 北京。機械工業(yè)出版社,2012.
[8] 袁一中.《液壓混凝土泵》 北京。水利電利出版社, 2011.
[9] 宋樹軍.《混凝土泵液壓系統(tǒng)關鍵技術研究》 。吉林大學, 2015.
[10] 錢志峰.劉蘇.工程圖學基礎教程[M]. 北京;科學出版社, 2011.
[11] 盛君豪.減速機使用技術手冊[M]. 北京;機械工業(yè)出版社,2012.
[12] 吳瑞琴.滾動軸承產(chǎn)品樣本[M].機械工業(yè)出版社,北京;中國石化出版社,2010.
[13]田利芳.混凝土運輸車結構設計及液壓系統(tǒng)動態(tài)仿真.西安建筑科技大學學位論文 2014.03.10.
[14] 王凱.混凝土泵車泵送系統(tǒng)設備[M]. 北京;化學工業(yè)出版社,2013.
[15] 黃健求.機械制造技術基礎[M]. 北京;機械工業(yè)出版社,2015.
[16] 混凝土泵送系統(tǒng)GB/T9142-2010.國家質量技術性能參數(shù).
[17] 臧宏琦,王永平.機械制圖[M]. 西安;西北大學工業(yè)出版社,2011.
[18]Chiara F. Ferraris Concrete Mixing Methods and Concrete Mixers:State of the Art Journal of Research of the National Institute ofStandards and Technology J. Res. Natl. Inst. Stand. Technol. Volume 2011 ( 391–399)
[19] Y.Charonnat and H.Beitzel.RILEM TC 150 ECM:Effcientcy of concrete mixers; to-wards qualification of mixer,mater.Struct.(Supp2016)28
[20] Huang S C, Huang Y M, Shieh S M. Vibration and stability of a rotating shaft containing a transerse crack [J]. J Sound and Vibration, 2013, 162(3): 387-401
- 8 -
Simulation and Optimization of the Driving Forces of Hydraulic Cylinders for Boom of Truck Mounted Concrete PumpZHONG Zhihong, WU Yunxin, MA ChangxunCollege of Mechanical and Electrical Engineering, Central South University, Changsha 410083, ChinaE-mail: Abstract-In order to obtain the maximum driving forces of hydraulic cylinders in the process of boom design, the solid model was built in Pro/E and then imported into ADAMS where the dynamic simulation model was established.Processes of the boom transforming from horizontal to typical poses were simulated and driving force variation curves of the hydraulic cylinders were generated. Accordingto the results, location of the joint connecting cylinder 2 and the links was optimized in ADAMS and the driving force decreased as a result. It is instructive to structure design of boom.Keywords-simulation;optimization;drivingforce;hydraulic cylinder; boom; Pro/E; ADAMSI.INTRODUCTIONTruck mounted concrete pump is a large engineering machinery used for concrete pouring. It is mainly composed of chassis, concrete pump and boom system,among which boom system best reflects characteristics of a truck mounted concrete pump. Boom systems safety, reliability and advancement are key factors that determine the competence of a truck mounted concrete pump 1 and its structure is as shown in Figure1. In order to study the boom system better, a laboratory designed a four-arm boom model which is approximately 13 meters long. After devisingthe boom structure and hydraulic system principle preliminarily, dynamic simulation and structure optimization are necessary in order to determine the oil pressure and cylinder dimensions et al.There are many previous literatures studying the structural strength 1-4 and dynamics 5-7 on boom of truck mounted pump, but less concerning structural design and optimization. In this paper virtual prototype of the boom was established with combination of Pro/E and ADAMS, and processes of the boom transforming from horizontal which is traditionally treated as the most dangerous working case to several typical poses in afour-arm-rotate-together way were simulated. Then the structure was optimized according to the simulation results.1 Turret 2 Arm 3 Hydraulic cylinder 4 LinkFigure 1. Structure of boomII.ESTABLISHMENT OF SIMULATION MODELA.3-D model building in Pro/EIn order to obtain accurate mass attributes including mass, centroid and moment of inertia, 3-D model should be built according to the dimension formerly designed as much as possible. Synchronously, details which have insignificant influence on overall mechanical property of the model should be simplified because too complicatedmodel may result in curves or surfaces missing in ADAMS. Based on this, in this paper each arm of the boom is built as a part and some details are simplified.According to the preliminarily designed drawings,turret, arms, hydraulic cylinders and links are built in powerful 3-D model building software Pro/E respectively,and then assemble them in bottom to top way into a boom which presents a horizontal pose as shown in Figure 2. 1 2 3 4 2011 Fourth International Conference on Intelligent Computation Technology and Automation978-0-7695-4353-6/11 $26.00 2011 IEEEDOI 10.1109/ICICTA.2011.2309412011 Fourth International Conference on Intelligent Computation Technology and Automation978-0-7695-4353-6/11 $26.00 2011 IEEEDOI 10.1109/ICICTA.2011.230915Figure 2. Solid model of the boomB.Model transfer and simulation model building inADAMS3-D model built in Pro/E can be imported into ADAMS by means of Mechanism/Pro which is the exclusive interface software between Pro/E and ADAMS provided by MSC. After installation and initial settings, Mechanism/ProwillappearinPro/Esassembly environment as a cascading menu in which rigid body definition, constraints applying, data transfer parameter settings and simple simulation et al. can be performed. Here we define each part of the boom as a rigid body, and establish a marker at every center of all the shafts for convenient positioning where a revolute joint will becreated later. Then the model can be transferred to ADAMS by Mechanism/Pro. There may be problems with the model that it does not display but its mass and moment of inertia et al. exist. This can be solved by returning to Pro/E to simplify the model further or doing as what is introduced in reference 8, which the paper will not elaborate.Firstly the materials of the boom and the gravity should be defined in ADAMS. Then constraints between parts should be created according to actual situations oftruck mounted concrete pump: the rotational degree of freedom of the boom as an entirety will not be consideredin this paper, so we fix the turret to the ground; we establish revolute joints at each center of all the shafts connecting different parts and translational joints between every pair of cylinder and piston rod. Whats more, four translational joint motions are applied on the four translational joints respectively.III.SIMULATION OF DRIVING FORCESDynamic simulations include forward simulation and reverse simulation: the forward studies dynamic responsesincluding accelerations, velocities, displacements and constraint forces et al. of a mechanical system under external forces or couples; the reverse solves forces with known motion parameters such as velocities, accelerationsand trajectories el al. In this paper we carry out reverse simulation of the boom model in ADAMS, that is, we define velocities of the four cylinders according to actual situation and simulate them in order to obtain their driving force variation curves in different motions.Boom works in diverse poses which usually can bedivided into several typical working poses such as foundation, roof, wall and so on. The boom can transform poses in a four-arm-rotate-together way; also it can rotateeach arm independently. So there are thousands of movement combinations. It is not only unnecessary but also impossible to simulate all cases. In this paperprocesses of the boom transforming from horizontal to the above three typical poses and vertical are simulated.A typical working pose does not mean a unique attitude. In this paper we define the angle combinationsbetween arms and the horizontal of the three above typical poses as 75,15,-15,-75 ? 75,45,15,-45 ?75,75,45,-30 respectively. According to the preliminary design of the hydraulic system, the maximumvelocity of piston is 20 mm/s with which in simulation velocity settings should comply. Regulating the velocities of each piston, simulations of the four processesmentioned above can be accomplished. After that, driving force variation curves of the cylinders in these processes are generated as shown in Figure 3-Figure 6.Figure 3.Driving force curve from horizontal to foundation942916Figure 4. Driving force curve from horizontal to roofFigure 5. Driving force curve from horizontal to wallFigure 6. Driving force curve from horizontal to verticalFrom the graphs shown above we can find that driving forces of cylinder 2, 3 and 4 reach their maximums when the boom is horizontal, while cylinder 1 is not the case. Therefore, designing a boom just as the traditional opinion that the horizontal pose is the most dangerous is not reasonable. Considering the special structure, driving force of cylinder 4 is far lower than the others is easy to understand. However, the maximum driving force of cylinder 2 reaches 90000 N which is much larger thancylinder 1 and 3. This may result in excessive high oilpressure or too large cylinder by tentative calculation. The former is unfavorable to design of hydraulic system; the later may lead to interference. As a result, structure of cylinder 2 and the links should be optimized in order to diminish the driving force.IV.OPTIMIZATIONAccording to mechanism theory, the structure which is comprised of two arms, two links, a cylinder and a piston rod as shown in Figure7 is a planar six-bar mechanism anddiminishing the driving force of cylinder 2 can be realizedby changing the location of joint A. We may build several groups of links with different lengths and reassemble the model and simulate them respectively, then select the best. However this is not an efficient approach. ADAMS provides convenient parameterization and optimization function. In this paper we perform the optimization of location of joint A in ADAMS.Figure 7. Structure of cylinder 2 and the linksSolid model imported in ADAMS cannot be optimized directly. The method we take is as follows: firstly deletecylinder 2 and the two links which are to be parameterizedand substitute standard components such as links in ADAMS for them; then parameterize coordinates of joint A and their lengths can be optimized by doing so.Optimization is a process of finding the objective function extrema under the condition that all design variables meet the constraints during their value ranges.A.Design variablesHere we define coordinates of joint A as design variables and mark them as DVX, DVYB.Constraintfunctionsrespectively.In order to meet requirements of the booms arbitrary transformation, folding and avoid interference after optimization, coordinates of joint A should be restricted and some constraints should be set as follows:3750 ? ? 4100,0 ? ?Y? 175 ?1?943917s.t. ? f1(?,?) = 200 ? ? 0 (2)f2(?,?) = ? 400 ? 0 (3)f3(?,?) = 200? ? 0 (4)f4(?,?) = ? 400 ? 0 (5)f5(?,?) = Abs(? ?)? 20 ? 0 (6)?where s.t. means subject to; LABand LACC.Objective functionare the lengths of the two links which are functions of coordinates of joint A;(2)(5) limit the two links lengths between 200 mm and 400 mm; (6) restricts the link length deference no more than 20 mm.According to the previousresults generated by simulation we know that driving force of cylinder 2 is largest when it is horizontal, so we replace cylinder 2 witha link and just perform static optimization when it is horizontal so as to simplify the process. So we can define the objective function as minimizing of the reaction force measurement function of the substitute link:min(Force_MEA(DVX,DVYD.Outcome of optimization)Optimization in ADAMS shows that the optimum location of joint A is?4013.10?43.89?, when lengths of the two links are 344.07 mm and 324.04 mm. Round the lengths to 344 mm and 324 mm, rebuild the solid models of the links, reassemble the boom and simulate the several processes mentioned above as before. Results generatedare as shown in Figure 8-Figure 11.Figure 8. Driving force curve from horizontal to foundation after optimizationFigure 9. Driving force curve from horizontal to roof after optimizationFigure 10. Driving force curve from horizontal to wall after optimizationFigure 11. Driving force curve from horizontal to vertical after optimizationFrom the above graphs we know that the curve shapesof driving forces after optimization resemble the ones before optimization, and driving force of cylinder 2 decreased to the same level with cylinder 1 and 3.V.CONCLUSIONIn this paper a complete procedure of simulation and optimization of the driving forces of hydraulic cylinders for boom of truck mounted concrete pump has been presented. Firstly establish the virtual prototype by 944918combination of Pro/E and ADAMS with Mechanism/Prowhich is the exclusive interface software between the two;then simulate several processes of the boom transforming from horizontal to typical poses and generate the driving force curves; lastly optimize the structure according to the simulation results. With this approach, we could carry out design, simulation and optimization of mechanical system conveniently without complex mathematic formula derivation and get satisfactory results.REFERENCE1SHI Xianxin, ZHENG Yongsheng, XU Huaiyu, FENG Min, ZHANGPengcheng, Finite Element Analysis on the Boom of Truck Mounted Concrete Pump Based on ANSYS, Construction Machinery, 2009, “”(04): 79-82. (In Chinese)2YAN Lijuan, FENG Min, XU Huaiyu, Finite Element Calculation and Analysis for Placing Boom of Model HB37 Concrete Pump Truck,Construction Machinery and Equipment, 2005, 36(1): 30-32. (InChinese)3 ZHANG Yanwei, TONG Li, SUN Guozheng, A Structure Analysis of Concrete Pumps Boom Based on ANSYS, Journal of Wuhan University of Technology (Transportation Science & Engineering),2004, 28(4): 536-539. (In Chinese)4ZHANG Daqing, LU Pengmin, HE Qinghua, HAO Peng,Experimental Research on Structural Dynamic Strength of a Concrete Pump Auto, Journal of Vibration and Shock, 2005, 24(3):111-113. (In Chinese)5LU Pengmin, WANF Hongbing, ZHANG Daqing, Influence of Structural Dynamic Characteristic by Concrete Pump Trucks Impact Load, China Journal of Highway and Transport, 2003, 16(4): 115-117.(In Chinese)6 LIU Jie, DAI Li, ZHAO Lijuan, CAI Juan, ZHANG Jing, Modeling and Simulation of Flexible Multi-Body Dynamics of Concrete Pump Truck Arm, Chinese Journal of Mechanical Engineering, 2007, 43(11): 131-135. (In Chinese)7SU Xiaoping, YIN Chenbo, WANG Dongfang, JIANG Tao, XU Cheng, Simulation of the Boom of Concrete Bump Truck Based on Multi-body Dynamics, Chinese Journal of Construction Mechanery,2004, 2(2): 167-170. (In Chinese)8NI Jinfeng, XU Cheng, The Method of Transforming Complex Model from Pro/E to ADAMS, Mechanical Engineer, 2004, “”(9): 15-16. (In Chinese)945919
收藏