《初中數(shù)學(xué)教學(xué)論文 (2)》由會員分享,可在線閱讀,更多相關(guān)《初中數(shù)學(xué)教學(xué)論文 (2)(2頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、初中數(shù)學(xué)教學(xué)論文:設(shè)計(jì)開放型題培養(yǎng)思維能力
??? 開放型習(xí)題是相對有明確條件和明確結(jié)論的封閉式習(xí)題而言的,是指題目的條件不完備或結(jié)論不確定的習(xí)題。
??? 練習(xí)是數(shù)學(xué)教學(xué)重要的組成部分,恰到好處的習(xí)題,不僅能鞏固知識,形成技能,而且能啟發(fā)思維,培養(yǎng)能力。在教學(xué)過程中,除注意增加變式題、綜合題外,適當(dāng)設(shè)計(jì)一些開放型習(xí)題,可以培養(yǎng)學(xué)生思維的深刻性 和靈活性,克服學(xué)生思維的呆板性。
??? 一、運(yùn)用不定型開放題,培養(yǎng)學(xué)生思維的深刻性
??? 不定型開放題,所給條件包含著答案不唯一的因素,在解題的過程中,必須利用已有的知識,結(jié)合有關(guān)條件,從不同的角度對問題作全面分析,正確判斷,得出結(jié)論,從而
2、培養(yǎng)學(xué)生思維的深刻性。
??? 如:學(xué)習(xí)“真分?jǐn)?shù)和假分?jǐn)?shù)”時,在學(xué)生已基本掌握了真假分?jǐn)?shù)的意義后,問學(xué)生:b/a是真分?jǐn)?shù),還是假分?jǐn)?shù)?因a、b都不是確定的數(shù),所以無法確定b/a是真分?jǐn)?shù)還是假分?jǐn)?shù)。在學(xué)生經(jīng)過緊張的思考和激烈的爭論后得出這樣的結(jié)論:當(dāng)b<a時,b/a為真分?jǐn)?shù);當(dāng)b≥a時, b/a是假分?jǐn)?shù)。這時教師進(jìn)一步問:a、b可以是任意數(shù)嗎? 這樣不僅使學(xué)生對真假分?jǐn)?shù)的意義有了更深刻的理解,而且使學(xué)生的邏輯思維能力得到了提高。
??? 又如,學(xué)習(xí)分?jǐn)?shù)時,學(xué)生對“分率”和“用分?jǐn)?shù)表示的具體數(shù)量”往往混淆不清,以致解題時在該知識點(diǎn)上出現(xiàn)錯誤,教師雖反復(fù)指出它們的區(qū)別,卻難以收到理想的效果。在學(xué)
3、習(xí)分?jǐn)?shù)應(yīng)用題后,讓學(xué)生做這樣一道習(xí)題:“有兩根同樣長的繩子,第一根截去9/10,第二根截去9/10米,哪一根繩子剩下的部分長?”此題出示后,有的學(xué)生說:“一樣長?!庇械膶W(xué)生說:“不一定?!蔽易寣W(xué)生討論哪種說法對,為什么?學(xué)生紛紛發(fā)表意見,經(jīng)過討論,統(tǒng)一認(rèn)識:“因?yàn)閮筛K子的長度沒有確定,第一根截去的長度就無法確定,所以哪一根繩子剩下的部分長也就無法確定,必須知道繩子原來的長度,才能確定哪根繩子剩下的部分長?!边@時再讓學(xué)生討論:兩根繩子剩下部分的長度有幾種情況?經(jīng)過充分的討論,最后得出如下結(jié)論:①當(dāng)繩子的長度是1米時,第一根的9/10等于9/10米,所以兩根繩子剩下的部分一樣長;②當(dāng)繩子的長度大
4、于1米時,第一根繩子的 9/10大于9/10米,所以第二根繩子剩下的長;③當(dāng)繩子的長度小于1米時,第一根繩子的9/10小于9/10 米 ,由于繩子的長度小于9/10米時,就無法從第二根繩子上截去9/10米,所以當(dāng)繩子的長度小于1米而大于9/ 10米時,第一根繩子剩下的部分長。
??? 這樣的練習(xí),加深了學(xué)生對“分率”和“用分?jǐn)?shù)表示的具體數(shù)量”的區(qū)別的認(rèn)識,鞏固了分?jǐn)?shù)應(yīng)用題的解題方法,培養(yǎng)了學(xué)生思維的深刻性,提高了全面分析、解決問題的能力。
??? 二、運(yùn)用多向型開放題,培養(yǎng)學(xué)生思維的廣闊性
??? 多向型開放題,對同一個問題可以有多種思考方向,使學(xué)生產(chǎn)生縱橫聯(lián)想,啟發(fā)學(xué)生一題多解、一題多變、一題多思,訓(xùn)練學(xué)生的發(fā)散思維,培養(yǎng)學(xué)生思維的廣闊性和靈活性。