差動(dòng)變速器、差速器的設(shè)計(jì)【含6張CAD圖紙、說(shuō)明書(shū)】
差動(dòng)變速器、差速器的設(shè)計(jì)【含6張CAD圖紙、說(shuō)明書(shū)】,含6張CAD圖紙、說(shuō)明書(shū),差動(dòng),變速器,差速器,設(shè)計(jì),CAD,圖紙,說(shuō)明書(shū)
Gear reducer based on U G 3 d entity model and movement simulation
Abstract: this paper introduces the final version with UG software UG NX MOSLING module gear reducer for the three-dimensional entity model, the main parts including shaft, gear, gear, shaft, the lower housing, on housing and assembly. Finally in the MOTION module of UG assembly model for the MOTION simulation.
Key words: UG; Three dimensional entity modeling; Gear reducer; The simulation
Chinese classification number: TH16 literature identifier: A
UG is a three-dimensional entity model in the integration of CAD/CAM/CAE technology and is widely used in computer aided design, analysis, manufacturing software. In this article, there are a few problems that should be paid attention to is: the involute gear tooth profile model, when operating hollow-out style cover, gear position between the shaft and gear assembly.
1 drawing involute tooth profile of the gear
On the other hand gear involute tooth profile gear in UG (3) the \"expression\" in the drawing, the involute gear teeth with vc + + 6.0 configuration file articles saved coordinate scheme and the corresponding data file tooth profile face value, and define spline drawing involute tooth profile gear use \"dot\" read from the file.
Involute polar parameter equation is
Will rk and the expansion of the substitution and the expression of trigonometric functions, can be obtained:
Here is in the K point of involute tooth profile radius, Angle is involute in AK, is radius of base circle, is at the K point of pressure Angle.
Figure 1, figure 2
With vc + + 6.0 program to change from 0 to 180 K (K +), you can get corresponding Xk and Yk, and save the corresponding data file JKX. Dat, as shown in figure 1.
In UG with insert - > curve - > simulation in the main menu, click the \"by\" button will pop up dialog box, and then the system displays as shown in figure 2 are connected by a spline. Click the \"take from the file\" button and select the aforementioned data file JKX. Dat, can get the corresponding involute as shown in figure 3.
Figure 3
Due to tooth thickness and reference circle tooth space width is equal to the gear tooth and tooth space is quite relative central Angle, then the opposite half tooth thickness is central Angle, that is, z represents the number of teeth, should be XC shaft rotation and through the expression of calculate, Angle is due to the reference standard gear pressure Angle for, should be XC shaft rotation. On the XC shaft drawing a straight line, and then select the line as the centerline of the mirror, \"cable\" on line \"mirror\" to mirror involute, the tooth profile surface and the radius of addendum Angle is, m as the modulus, is the nominal pressure Angle, is the coefficient of tooth bottom. Finally, you can get the gear as shown in figure 4, the three-dimensional entity model. .
Figure 4
Similarly, you can get the gear involute gear shaft contour.
2 when the cover is modeling some problems deserve attention
Hollow cap to cover the entire model, completed the receive part of the entity, can't fully perfect entity. In this article, we use \"hollowing out\" in the \"area\" and the coverage can be divided into two parts: the bearing seat, and raised levels and boarding and can join together is a part of them; The rest is another part, and the hollow. The key point is to join before hollowing out, and must be after the hollowing out. We believe that the complex system should be broken down into simple, and hollowed out respectively, and then join.
3 the position of the gear shaft and gear assembly
Between gears and gear shaft axial position when in the assembly is to determine, so the interference may occur between the teeth. In UG, there are eight types of restrictions, such as: gear, alignment, Angle, parallel, perpendicular, center, distance and tangent, but they are not sure the two gear meshing relationship. Therefore, it is necessary when the entity model of gear shaft and gear design drawing the relative position. We paint in the assembly process of the gear shaft centerline with the centerline of the gear space and two lines should be kept parallel to each other, can avoid the interference between the tooth and. We have installed parallel to the edge line of above two lines respectively, with parallel restriction relationship, so, two parallel lines may be more. Therefore, tooth interference will not occur in the process of eating.
We have completed the reducer is a major component of three-dimensional entity model. Then, let's do it in the motion simulation. First of all, in the case of establishing motion analysis, gear shaft and bearing inner ring as the first connection; Shaft, the gear, had been fixed distance ring and inner ring bearings as the second link. Then, established the joint movement of the unit. That is established between the gear shaft and gear rotary separately. Finally, set the composite gear rotary movement one and two. Select kinematic/dynamic analysis on the picture, and insert the time and steps, we can get the gear reducer movement simulation.
基于 U G 的減速器三維實(shí)體模型和運(yùn)動(dòng)仿真
摘要:本文介紹了用UG軟件的最終版UG NX的MOSLING模塊對(duì)減速器進(jìn)行了三維實(shí)體造型,主要零件包括軸、齒輪、齒、輪軸、下箱體、上箱體及相應(yīng)的裝配。最后在UG的MOTION模塊中對(duì)裝配模型進(jìn)行了運(yùn)動(dòng)仿真。
關(guān)鍵詞:UG;三維實(shí)體造型;減速器;仿真
中文分類號(hào):TH16 文獻(xiàn)標(biāo)識(shí)碼:A
UG是三維實(shí)體模型于一體的CAD / CAM/ CAE技術(shù)及廣泛應(yīng)用于全球的計(jì)算機(jī)輔助設(shè)計(jì)、分析、制造軟件。在這篇文章中有幾個(gè)問(wèn)題應(yīng)注意的是:漸開(kāi)線齒齒輪輪廓模型、當(dāng)操作時(shí)鏤空造型的封面、齒輪軸和齒輪之間的裝配時(shí)的位置。
1 繪制漸開(kāi)線齒廓齒輪齒
另一方面齒輪漸開(kāi)線齒廓齒可在UG〔3〕里的“表達(dá)”繪制,這個(gè)漸開(kāi)線齒輪齒牙用VC++ 6.0配置文件的文章保存協(xié)調(diào)方案和相應(yīng)的數(shù)據(jù)文件中齒廓面價(jià)值,并用定義樣條繪制漸開(kāi)線齒廓齒輪使用“從文件中讀點(diǎn)”。
漸開(kāi)線極坐標(biāo)參數(shù)方程是
將和代入和三角函數(shù)表達(dá)式的擴(kuò)展,可得到:
這里的是在K點(diǎn)處的漸開(kāi)線齒形半徑,是漸開(kāi)線在AK段得角度,是基圓半徑,是在K點(diǎn)處的壓力角。
圖1 圖2
用VC++ 6.0程序來(lái)改變從0到180改變(K+K),可以得到相應(yīng)的Xk和Yk,并保存相應(yīng)的數(shù)據(jù)文件jkx . dat,如圖1所示。
在UG的主菜單中有插入→曲線→仿真,單擊“通過(guò)點(diǎn)”按鈕會(huì)彈出對(duì)話框,然后系統(tǒng)顯示如圖2通過(guò)點(diǎn)樣條。單擊“從文件中取點(diǎn)”按鈕并且選擇前面提到的數(shù)據(jù)文件jkx . dat,可以得到如圖3中相應(yīng)的漸開(kāi)線。
圖3
由于齒厚和參考圓齒空間寬度是相等的,齒輪的齒與齒的空間相對(duì)圓心角是相當(dāng)?shù)模敲聪喾吹陌臊X厚中心角是,即,z代表齒數(shù),XC軸應(yīng)旋轉(zhuǎn)并且通過(guò)的表達(dá)式算出,角是由于參考標(biāo)準(zhǔn)齒輪壓力角為,XC軸應(yīng)該旋轉(zhuǎn)。在XC軸上繪制一條直線,然后選擇這條線作為鏡像的中線,用“已有線”在“鏡像線”來(lái)鏡像漸開(kāi)線,在齒廓面和齒頂?shù)陌霃浇鞘?,m為模數(shù),是公稱壓力角,是齒底系數(shù)。最后,可以的得到如圖4齒輪的三維實(shí)體模型。.
圖 4
同理,可以得到齒輪漸開(kāi)線齒輪軸輪廓。
2 當(dāng)覆蓋建模是有些問(wèn)題應(yīng)該得到重視
空心蓋在完成了覆蓋整個(gè)模型,可以得到部分實(shí)體,不能得到充分完美的實(shí)體。此文中,我們利用“空心化”里的“區(qū)域”和將覆蓋分為兩部分:軸承座,突起的水平和寄宿而且可以聯(lián)接在一起的是其中的一部份;其余的是另外一部分,和空心分離的。這關(guān)鍵點(diǎn)就是在空洞化之前聯(lián)接,并且必須在空洞化之后。我們認(rèn)為,復(fù)雜的機(jī)構(gòu)應(yīng)當(dāng)分解為簡(jiǎn)單的機(jī)構(gòu),并分別挖空,然后再聯(lián)接。
3 齒輪軸和齒輪裝配時(shí)的位置
齒輪和齒輪軸之間的軸向位置當(dāng)在組裝是去確定的,所以干擾可能發(fā)生在齒間。在UG中,有八種類型的限制,例如:嚙合、對(duì)齊、角度、平行、垂直、中心、距離和正切,但他們都不確定兩個(gè)齒輪的嚙合關(guān)系。因此,有必要在齒輪軸和齒輪的實(shí)體模型設(shè)計(jì)時(shí)繪制相對(duì)位置。在裝配過(guò)程中我們繪制齒輪齒軸中心線與中心線空間齒輪齒和兩行應(yīng)保持相互平行,所以干擾可避免與齒間。我們一直與邊緣線以上兩行分別平行安裝,帶平行制約的關(guān)系,所以,兩直線可能更平行。因此,輪齒在吃過(guò)程中不會(huì)發(fā)生干擾。
我們完成了減速器三維實(shí)體模型的主要組成部分。然后,我們來(lái)做它的運(yùn)動(dòng)仿真。首先,在建立運(yùn)動(dòng)分析的情況下,齒輪軸和軸承內(nèi)圈的作為第一個(gè)聯(lián)接;軸、齒輪、已固定距離的環(huán)和相應(yīng)的內(nèi)圈軸承作為第二聯(lián)接。接著,成立了聯(lián)合運(yùn)動(dòng)的單位。即成立了齒輪軸和齒輪之間的分開(kāi)回轉(zhuǎn)。最后,設(shè)置復(fù)合齒輪的回轉(zhuǎn)一和二運(yùn)動(dòng)。選擇運(yùn)動(dòng)學(xué)/動(dòng)力學(xué)分析圖畫,并且插入時(shí)間和步驟,我們可以得到減速器的運(yùn)動(dòng)仿真。
收藏