廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 立體幾何 8.3 空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系課件 文.ppt
《廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 立體幾何 8.3 空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系課件 文.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 立體幾何 8.3 空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系課件 文.ppt(40頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、8.3空間點(diǎn)、直線(xiàn)、平面 之間的位置關(guān)系,知識(shí)梳理,雙基自測(cè),2,3,4,1,6,5,7,1.平面的基本性質(zhì) 公理1:如果一條直線(xiàn)上的在一個(gè)平面內(nèi),那么這條直線(xiàn)在此平面內(nèi). 公理2:過(guò)的三點(diǎn),有且只有一個(gè)平面. 公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有 過(guò)該點(diǎn)的公共直線(xiàn).,兩點(diǎn),不在一條直線(xiàn)上,一條,知識(shí)梳理,雙基自測(cè),2,3,4,1,6,5,7,2.直線(xiàn)與直線(xiàn)的位置關(guān)系,平行,相交,任何,(2)異面直線(xiàn)所成的角 定義:設(shè)a,b是兩條異面直線(xiàn),經(jīng)過(guò)空間任一點(diǎn)O作直線(xiàn)aa,bb,把a(bǔ)與b所成的銳角(或直角)叫做異面直線(xiàn)a,b所成的角(或夾角).,知識(shí)梳理,雙基自測(cè),2,3,4
2、,1,6,5,7,3.公理4 平行于的兩條直線(xiàn)互相平行.,同一條直線(xiàn),知識(shí)梳理,雙基自測(cè),2,3,4,1,6,5,7,4.定理 空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角.,相等或互補(bǔ),知識(shí)梳理,雙基自測(cè),2,3,4,1,6,5,7,5.直線(xiàn)與平面的位置關(guān)系 直線(xiàn)與平面的位置關(guān)系有 、 、三種情況.,平行,相交,在平面內(nèi),,知識(shí)梳理,雙基自測(cè),2,3,4,1,6,5,7,6.平面與平面的位置關(guān)系 平面與平面的位置關(guān)系有、兩種情況.,平行,相交,知識(shí)梳理,雙基自測(cè),2,3,4,1,6,5,7,7.常用結(jié)論 (1)唯一性定理 過(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)平行. 過(guò)直線(xiàn)外一點(diǎn)有且只有
3、一個(gè)平面與已知直線(xiàn)垂直. 過(guò)平面外一點(diǎn)有且只有一個(gè)平面與已知平面平行. 過(guò)平面外一點(diǎn)有且只有一條直線(xiàn)與已知平面垂直. (2)異面直線(xiàn)的判定定理 經(jīng)過(guò)平面內(nèi)一點(diǎn)的直線(xiàn)與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線(xiàn)互為異面直線(xiàn).,知識(shí)梳理,雙基自測(cè),2,3,4,1,6,5,7,(3)確定平面的三個(gè)推論 推論1:經(jīng)過(guò)一條直線(xiàn)和這條直線(xiàn)外一點(diǎn),有且只有一個(gè)平面. 推論2:經(jīng)過(guò)兩條相交直線(xiàn),有且只有一個(gè)平面. 推論3:經(jīng)過(guò)兩條平行直線(xiàn),有且只有一個(gè)平面. (4)異面直線(xiàn)易誤解為“分別在兩個(gè)不同平面內(nèi)的兩條直線(xiàn)為異面直線(xiàn)”,實(shí)質(zhì)上兩異面直線(xiàn)不能確定任何一個(gè)平面,因此異面直線(xiàn)既不平行,也不相交.,2,知識(shí)梳理,雙基自測(cè),3,4,
4、1,5,1.下列結(jié)論正確的打“”,錯(cuò)誤的打“”. (1)兩個(gè)不重合的平面只能把空間分成四個(gè)部分.() (2)兩個(gè)平面,有一個(gè)公共點(diǎn)A,就說(shuō),相交于A點(diǎn),記作=A. () (3)已知a,b是異面直線(xiàn),直線(xiàn)c平行于直線(xiàn)a,那么c與b不可能是平行直線(xiàn).() (4)如果兩個(gè)不重合的平面,有一條公共直線(xiàn)a,那么就說(shuō)平面,相交,并記作=a.() (5)若a,b是兩條直線(xiàn),,是兩個(gè)平面,且a,b,則a,b是異面直線(xiàn).(),答案,知識(shí)梳理,雙基自測(cè),2,3,4,1,5,2.如圖,在正方體ABCD-A1B1C1D1中,E,F分別為BC,BB1的中點(diǎn),則下列直線(xiàn)與直線(xiàn)EF相交的是() A.直線(xiàn)AA1 B.直線(xiàn)A1
5、B1 C.直線(xiàn)A1D1 D.直線(xiàn)B1C1,答案,解析,知識(shí)梳理,雙基自測(cè),2,3,4,1,5,3.如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線(xiàn)AB與平面MNQ不平行的是(),答案,解析,知識(shí)梳理,雙基自測(cè),2,3,4,1,5,答案,4.設(shè)P表示一個(gè)點(diǎn),a,b表示兩條直線(xiàn),,表示兩個(gè)平面,給出下列四個(gè)命題,其中正確的命題是.(填序號(hào)) Pa,Pa;ab=P,ba;ab,a,Pb,Pb;=b,P,PPb.,知識(shí)梳理,雙基自測(cè),2,3,4,1,5,5.(教材探究改編P46)如圖,在三棱錐A-BCD中,E,F,G,H分別是棱AB,BC,CD,D
6、A的中點(diǎn),則 (1)當(dāng)AC,BD滿(mǎn)足條件時(shí),四邊形EFGH為菱形; (2)當(dāng)AC,BD滿(mǎn)足條件時(shí),四邊形EFGH是正方形.,答案,解析,知識(shí)梳理,雙基自測(cè),2,3,4,1,5,自測(cè)點(diǎn)評(píng) 1.做有關(guān)平面基本性質(zhì)的判斷題時(shí),要抓住關(guān)鍵詞,如“有且只有”“只能”“最多”等. 2.兩個(gè)不重合的平面只要有一個(gè)公共點(diǎn),那么兩個(gè)平面一定相交且得到的是一條直線(xiàn). 3.異面直線(xiàn)是指不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)的直線(xiàn).不能錯(cuò)誤地理解為不在某一個(gè)平面內(nèi)的兩條直線(xiàn)就是異面直線(xiàn).,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,例1 如圖,在正方體ABCD-A1B1C1D1中,E,F分別是AB,AA1的中點(diǎn),求證: (1)E,C,D1
7、,F四點(diǎn)共面; (2)CE,D1F,DA三線(xiàn)共點(diǎn). 思考如何利用平面的基本性質(zhì)證明點(diǎn)共線(xiàn)和線(xiàn)共點(diǎn)?,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,證明 (1)如圖,連接EF,CD1,A1B. E,F分別是AB,AA1的中點(diǎn), EFA1B. 又A1BCD1, EFCD1,E,C,D1,F四點(diǎn)共面. (2)EFCD1,EF 8、再證有關(guān)點(diǎn)、線(xiàn)在此平面內(nèi); (2)輔助平面法:先證有關(guān)點(diǎn)、線(xiàn)確定平面,再證其余點(diǎn)、線(xiàn)確定平面,最后證明平面,重合. 2.證明多線(xiàn)共點(diǎn)問(wèn)題,常用的方法是:先證其中兩條直線(xiàn)交于一點(diǎn),再證交點(diǎn)在第三條直線(xiàn)上.證交點(diǎn)在第三條直線(xiàn)上時(shí),第三條直線(xiàn)應(yīng)為前兩條直線(xiàn)所在平面的交線(xiàn),可以利用公理3證明.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,對(duì)點(diǎn)訓(xùn)練1如圖,在空間四邊形ABCD中,E,F分別是AB,AD的中點(diǎn),G,H分別在BC,CD上,且BGGC=DHHC=12. (1)求證:E,F,G,H四點(diǎn)共面; (2)設(shè)EG與FH交于點(diǎn)P,求證:P,A,C三點(diǎn)共線(xiàn).,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,證明 (1)E,F分別為AB,AD的中點(diǎn), 9、 EFBD. GHBD,EFGH. E,F,G,H四點(diǎn)共面. (2)EGFH=P,PEG,EG平面ABC, P平面ABC.同理P平面ADC. P為平面ABC與平面ADC的公共點(diǎn). 又平面ABC平面ADC=AC, PAC,P,A,C三點(diǎn)共線(xiàn).,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,例2平面過(guò)正方體ABCD-A1B1C1D1的頂點(diǎn)A,平面CB1D1,平面ABCD=m,平面ABB1A1=n,則m,n所成角的正弦值為(),思考如何求兩條異面直線(xiàn)所成的角?,A,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,解析:(方法一)平面CB1D1,平面ABCD平面A1B1C1D1,平面ABCD=m,平面CB1D1平面A1B1C1D1=B1D1,mB 10、1D1. 平面CB1D1,平面ABB1A1平面DCC1D1,平面ABB1A1=n,平面CB1D1平面DCC1D1=CD1,nCD1. B1D1,CD1所成的角等于m,n所成的角, 即B1D1C等于m,n所成的角. B1D1C為正三角形,B1D1C=60,,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(方法二)由題意畫(huà)出圖形如圖,將正方體ABCD-A1B1C1D1平移,補(bǔ)形為兩個(gè)全等的正方體如圖,易證平面AEF平面CB1D1,所以平面AEF即為平面,m即為AE,n即為AF,所以AE與AF所成的角即為m與n所成的角. 因?yàn)锳EF是正三角形,所以EAF=60,,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,解題心得幾何法求異面直線(xiàn)所成的角 11、(1)作:利用定義轉(zhuǎn)化為平面角,對(duì)于異面直線(xiàn)所成的角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上. (2)證:證明作出的角為所求角. (3)求:把這個(gè)平面角置于一個(gè)三角形中,通過(guò)解三角形求空間角.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,對(duì)點(diǎn)訓(xùn)練2(1)在我國(guó)古代數(shù)學(xué)名著九章算術(shù)中,將四個(gè)面都為直角三角形的四面體稱(chēng)為鱉臑,如圖,在鱉臑ABCD中,AB平面BCD,且AB=BC=CD,則異面直線(xiàn)AC與BD所成角的余弦值為(),A,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(2)如圖,在正方體ABCD-A1B1C1D1中,M,N分別是A1B1,B1C1的中點(diǎn).問(wèn): AM和CN是不是異面直線(xiàn)?說(shuō)明理 12、由. D1B和CC1是不是異面直線(xiàn)?說(shuō)明理由.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,解析:(1)如圖所示,分別取AB,AD,BC,BD的中點(diǎn)E,F,G,O,則EFBD,EGAC,FOOG,FEG為異面直線(xiàn)AC與BD所成角.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(2)解:不是異面直線(xiàn).理由如下: 如圖,連接MN,A1C1,AC. M,N分別是A1B1,B1C1的中點(diǎn), MNA1C1. 又A1AC1C, 四邊形A1ACC1為平行四邊形, A1C1AC,MNAC. A,M,N,C在同一平面內(nèi), 故AM和CN不是異面直線(xiàn).,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,是異面直線(xiàn).理由如下: ABCD-A1B1C1D1是正方體, B,C,C1,D 13、1不共面. 假設(shè)D1B與CC1不是異面直線(xiàn),則存在平面,使D1B平面,CC1平面, D1,B,C,C1,與B,C,C1,D1不共面矛盾.假設(shè)不成立,即D1B與CC1是異面直線(xiàn).,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,例3設(shè)直線(xiàn)m與平面相交但不垂直,則下列說(shuō)法中正確的是() A.在平面內(nèi)有且只有一條直線(xiàn)與直線(xiàn)m垂直 B.過(guò)直線(xiàn)m有且只有一個(gè)平面與平面垂直 C.與直線(xiàn)m垂直的直線(xiàn)不可能與平面平行 D.與直線(xiàn)m平行的平面不可能與平面垂直 思考如何借助空間圖形確定線(xiàn)面位置關(guān)系?,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,解題心得解決這類(lèi)問(wèn)題的關(guān)鍵就是熟悉直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面的各種位置關(guān)系及相應(yīng)的公理定理,歸 14、納整理平面幾何中成立但立體幾何中不成立的命題,并在解題過(guò)程中注意避免掉入由此設(shè)下的陷阱.判斷時(shí)可由易到難進(jìn)行,一般是作圖分析,構(gòu)造出符合題設(shè)條件的圖形或反例來(lái)判斷.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,對(duì)點(diǎn)訓(xùn)練3,是兩個(gè)平面,m,n是兩條直線(xiàn),有下列四個(gè)命題: 如果mn,m,n,那么. 如果m,n,那么mn. 如果,m,那么m. 如果mn,,那么m與所成的角和n與所成的角相等. 其中正確的命題有.(填寫(xiě)所有正確命題的編號(hào)),答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,1.公理1是判斷一條直線(xiàn)是否在某個(gè)平面內(nèi)的依據(jù);公理2及其推論是判斷或證明點(diǎn)、線(xiàn)共面的依據(jù);公理3是證明三線(xiàn)共點(diǎn)或三點(diǎn)共線(xiàn)的依據(jù).要能夠熟練用文字語(yǔ) 15、言、符號(hào)語(yǔ)言、圖形語(yǔ)言來(lái)表示公理. 2.判定空間兩條直線(xiàn)是異面直線(xiàn)的方法 (1)判定定理:平面外一點(diǎn)A與平面內(nèi)一點(diǎn)B的連線(xiàn)和平面內(nèi)不經(jīng)過(guò)點(diǎn)B的直線(xiàn)是異面直線(xiàn). (2)反證法:證明兩線(xiàn)不可能平行、相交或證明兩線(xiàn)不可能共面,從而可得兩線(xiàn)異面.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,1.異面直線(xiàn)易誤解為“分別在兩個(gè)不同平面內(nèi)的兩條直線(xiàn)為異面直線(xiàn)”,實(shí)質(zhì)上兩異面直線(xiàn)不能確定任何一個(gè)平面,因此異面直線(xiàn)既不平行,也不相交. 2.直線(xiàn)與平面的位置關(guān)系在判斷時(shí)最易忽視“線(xiàn)在面內(nèi)”.,思想方法構(gòu)造模型判斷空間線(xiàn)面的位置關(guān)系 空間點(diǎn)、直線(xiàn)、平面的位置關(guān)系是立體幾何的理論基礎(chǔ),高考常設(shè)置選擇題或填空題,考查直線(xiàn)、平面位置關(guān)系的判 16、斷和異面直線(xiàn)所成的角的求法.在判斷線(xiàn)、面位置關(guān)系時(shí),有時(shí)可以借助常見(jiàn)的幾何體作出判斷.這類(lèi)試題一般稱(chēng)為空間線(xiàn)面位置關(guān)系的組合判斷題,解決的方法是“推理論證加反例推斷”,即正確的結(jié)論需要根據(jù)空間線(xiàn)面位置關(guān)系的相關(guān)定理進(jìn)行證明,錯(cuò)誤的結(jié)論需要通過(guò)舉出反例說(shuō)明其錯(cuò)誤,在解題中可以以常見(jiàn)的空間幾何體(如正方體、正四面體等)為模型進(jìn)行推理或者反駁.,典例(1)已知空間三條直線(xiàn)l,m,n,若l與m異面,且l與n異面,則() A.m與n異面 B.m與n相交 C.m與n平行 D.m與n異面、相交、平行均有可能 (2)在正方體ABCD-A1B1C1D1中,E,F分別為棱AA1,CC1的中點(diǎn),則在空間中與三條直線(xiàn) 17、A1D1,EF,CD都相交的直線(xiàn)有條.,(3)已知m,n是兩條不同的直線(xiàn),,為兩個(gè)不同的平面,有下列四個(gè)命題: 若m,n,mn,則; 若m,n,mn,則; 若m,n,mn,則; 若m,n,,則mn. 其中所有正確的命題的序號(hào)是. 答案(1)D(2)無(wú)數(shù)(3),解析 (1)在如圖所示的長(zhǎng)方體中,m,n1與l都異面,但是mn1,所以A,B錯(cuò)誤;m,n2與l都異面,且m,n2也異面, 所以C錯(cuò)誤. (2)(方法一) 如圖,在EF上任意取一點(diǎn)M,直線(xiàn)A1D1與M確定一個(gè)平面,這個(gè)平面與CD有且僅有一個(gè)交點(diǎn)N,當(dāng)M取不同的位置時(shí)就確定不同的平面,從而與CD有不同的交點(diǎn)N,而直線(xiàn)MN與這三條異面直線(xiàn)都有交 18、點(diǎn),所以在空間中與這三條直線(xiàn)都相交的直線(xiàn)有無(wú)數(shù)條.,(方法二)在A1D1上任取一點(diǎn)P,過(guò)點(diǎn)P與直線(xiàn)EF作一個(gè)平面,因CD與平面不平行,所以它們相交,設(shè)它們交于點(diǎn)Q,連接PQ(圖略),則PQ與EF必然相交,即PQ為所求直線(xiàn).由點(diǎn)P的任意性,知有無(wú)數(shù)條直線(xiàn)與三條直線(xiàn)A1D1,EF,CD都相交. (3)借助于長(zhǎng)方體模型來(lái)解決本題,對(duì)于,可以得到平面,互相垂直,如圖a所示,故正確;對(duì)于,平面,可能垂直,如圖b所示,故不正確;對(duì)于,平面,可能垂直,如圖c所示,故不正確;對(duì)于,由m,可得m,因?yàn)閚,所以過(guò)n作平面,且=g,如圖d所示,所以n與交線(xiàn)g平行,因?yàn)閙g,所以mn,故正確.,反思提升1.構(gòu)造法實(shí)質(zhì)上是結(jié)合題意構(gòu)造符合題意的直觀模型,然后將問(wèn)題利用模型直觀地作出判斷,這樣減少了抽象性,避免了因考慮不全面而導(dǎo)致解題錯(cuò)誤. 2.對(duì)于線(xiàn)面、面面平行、垂直的位置關(guān)系的判定,可構(gòu)造長(zhǎng)方體或正方體化抽象為直觀去判斷.,
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護(hù)納稅人的合法權(quán)益)
- 2024《文物保護(hù)法》全文解讀學(xué)習(xí)(加強(qiáng)對(duì)文物的保護(hù)促進(jìn)科學(xué)研究工作)
- 銷(xiāo)售技巧培訓(xùn)課件:接近客戶(hù)的套路總結(jié)
- 20種成交的銷(xiāo)售話(huà)術(shù)和技巧
- 銷(xiāo)售技巧:接近客戶(hù)的8種套路
- 銷(xiāo)售套路總結(jié)
- 房產(chǎn)銷(xiāo)售中的常見(jiàn)問(wèn)題及解決方法
- 銷(xiāo)售技巧:值得默念的成交話(huà)術(shù)
- 銷(xiāo)售資料:讓人舒服的35種說(shuō)話(huà)方式
- 汽車(chē)銷(xiāo)售績(jī)效管理規(guī)范
- 銷(xiāo)售技巧培訓(xùn)課件:絕對(duì)成交的銷(xiāo)售話(huà)術(shù)
- 頂尖銷(xiāo)售技巧總結(jié)
- 銷(xiāo)售技巧:電話(huà)營(yíng)銷(xiāo)十大定律
- 銷(xiāo)售逼單最好的二十三種技巧
- 銷(xiāo)售最常遇到的10大麻煩