2019-2020年高中數(shù)學 1.3 簡單的邏輯聯(lián)結詞教案 北師大版選修2-1.doc
《2019-2020年高中數(shù)學 1.3 簡單的邏輯聯(lián)結詞教案 北師大版選修2-1.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 1.3 簡單的邏輯聯(lián)結詞教案 北師大版選修2-1.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 1.3 簡單的邏輯聯(lián)結詞教案 北師大版選修2-1 (一)教學目標 1.知識與技能目標: (1) 掌握邏輯聯(lián)結詞“或、且”的含義 (2) 正確應用邏輯聯(lián)結詞“或、且”解決問題 (3) 掌握真值表并會應用真值表解決問題 2.過程與方法目標: 在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學生思維的嚴密性品質(zhì)的培養(yǎng). 3.情感態(tài)度價值觀目標: 激發(fā)學生的學習熱情,激發(fā)學生的求知欲,培養(yǎng)嚴謹?shù)膶W習態(tài)度,培養(yǎng)積極進取的精神. (二)教學重點與難點 重點:通過數(shù)學實例,了解邏輯聯(lián)結詞“或、且”的含義,使學生能正確地表述相關數(shù)學內(nèi)容。 難點:1、正確理解命題“P∧q”“P∨q”真假的規(guī)定和判定.2、簡潔、準確地表述命題“P∧q”“P∨q”. 教具準備:與教材內(nèi)容相關的資料。 教學設想:在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學生思維的嚴密性品質(zhì)的培養(yǎng). (三)教學過程 學生探究過程: 1、引入 在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質(zhì)的重要方面.數(shù)學的特點是邏輯性強,特別是進入高中以后,所學的數(shù)學比初中更強調(diào)邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學們在初中已經(jīng)開始接觸一些簡易邏輯的知識. 在數(shù)學中,有時會使用一些聯(lián)結詞,如“且”“或”“非”。在生活用語中,我們也使用這些聯(lián)結詞,但表達的含義和用法與數(shù)學中的含義和用法不盡相同。下面介紹數(shù)學中使用聯(lián)結詞“且”“或”“非”聯(lián)結命題時的含義和用法。 為敘述簡便,今后常用小寫字母p,q,r,s,…表示命題。(注意與上節(jié)學習命題的條件p與結論q的區(qū)別) 2、思考、分析 問題1:下列各組命題中,三個命題間有什么關系? (1)①12能被3整除; ②12能被4整除; ③12能被3整除且能被4整除。 (2)①27是7的倍數(shù); ②27是9的倍數(shù); ③27是7的倍數(shù)或是9的倍數(shù)。 學生很容易看到,在第(1)組命題中,命題③是由命題①②使用聯(lián)結詞“且”聯(lián)結得到的新命題,在第(2)組命題中,命題③是由命題①②使用聯(lián)結詞“或”聯(lián)結得到的新命題,。 問題2:以前我們有沒有學習過象這樣用聯(lián)結詞“且”或“或”聯(lián)結的命題呢?你能否舉一些例子? 例如:命題p:菱形的對角線相等且菱形的對角線互相平分。 命題q:三條邊對應成比例的兩個三角形相似或兩個角相等的兩個三角形相似。 3、歸納定義 一般地,用聯(lián)結詞“且”把命題p和命題q聯(lián)結起來,就得到一個新命題,記作 p∧q 讀作“p且q”。 一般地,用聯(lián)結詞“或”把命題p和命題q聯(lián)結起來,就得到一個新命題,記作p∨q,讀作“p或q”。 命題“p∧q”與命題“p∨q”即,命題“p且q”與命題“p或q”中的“且”字與“或” 字與下面兩個命題中的“且” 字與“或” 字的含義相同嗎? (1)若 x∈A且x∈B,則x∈A∩B。 (2)若 x∈A或x∈B,則x∈A∪B。 定義中的“且”字與“或” 字與兩個命題中的“且” 字與“或” 字的含義是類似。但這里的邏輯聯(lián)結詞“且”與日常語言中的“和”,“并且”,“以及”,“既…又…”等相當,表明前后兩者同時兼有,同時滿足, 邏輯聯(lián)結詞“或”與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能. 說明:符號“∧”與“∩”開口都是向下,符號“∨”與“∪”開口都是向上。 注意:“p或q”,“p且q”,命題中的“p”、“q”是兩個命題,而原命題,逆命題,否命題,逆否命題中的“p”,“q”是一個命題的條件和結論兩個部分. 4、命題“p∧q”與命題“p∨q”的真假的規(guī)定 你能確定命題“p∧q”與命題“p∨q”的真假嗎?命題“p∧q”與命題“p∨q”的真假和命題p,q的真假之間有什么聯(lián)系? 引導學生分析前面所舉例子中命題p,q以及命題p∧q的真假性,概括出這三個命題的真假之間的關系的一般規(guī)律。 例如:在上面的例子中,第(1)組命題中,①②都是真命題,所以命題③是真命題。 第(2)組命題中,①是假命題,②是真命題,但命題③是真命題。 p q p∧q 真 真 真 真 假 假 假 真 假 假 假 假 p q p∨q 真 真 真 真 假 真 假 真 真 假 假 假 (即一假則假) (即一真則真) 一般地,我們規(guī)定: 當p,q都是真命題時,p∧q是真命題;當p,q兩個命題中有一個命題是假命題時,p∧q是假命題;當p,q兩個命題中有一個是真命題時,p∨q是真命題;當p,q兩個命題都是假命題時,p∨q是假命題。 5、例題 例1:將下列命題分別用“且”與“或” 聯(lián)結成新命題“p∧q” 與“p∨q”的形式,并判斷它們的真假。 (1)p:平行四邊形的對角線互相平分,q:平行四邊形的對角線相等。 (2)p:菱形的對角線互相垂直,q:菱形的對角線互相平分; (3)p:35是15的倍數(shù),q:35是7的倍數(shù). 解:(1)p∧q:平行四邊形的對角線互相平分且平行四邊形的對角線相等.也可簡寫成 平行四邊形的對角線互相平分且相等. p∨q: 平行四邊形的對角線互相平分或平行四邊形的對角線相等. 也可簡寫成 平行四邊形的對角線互相平分或相等. 由于p是真命題,且q也是真命題,所以p∧q是真命題, p∨q也是真命題. (2)p∧q:菱形的對角線互相垂直且菱形的對角線互相平分. 也可簡寫成 菱形的對角線互相垂直且平分. p∨q: 菱形的對角線互相垂直或菱形的對角線互相平分. 也可簡寫成 菱形的對角線互相垂直或平分. 由于p是真命題,且q也是真命題,所以p∧q是真命題, p∨q也是真命題. (3)p∧q:35是15的倍數(shù)且35是7的倍數(shù). 也可簡寫成 35是15的倍數(shù)且是7的倍數(shù). p∨q: 35是15的倍數(shù)或35是7的倍數(shù). 也可簡寫成 35是15的倍數(shù)或是7的倍數(shù). 由于p是假命題, q是真命題,所以p∧q是假命題, p∨q是真命題. 說明,在用"且"或"或"聯(lián)結新命題時,如果簡寫,應注意保持命題的意思不變. 例2:選擇適當?shù)倪壿嬄?lián)結詞“且”或“或”改寫下列命題,并判斷它們的真假。 (1)1既是奇數(shù),又是素數(shù); (2)2是素數(shù)且3是素數(shù); (3)2≤2. 解略. 例3、判斷下列命題的真假; (1)6是自然數(shù)且是偶數(shù) (2)是A的子集且是A的真子集; (3)集合A是A∩B的子集或是A∪B的子集; (4)周長相等的兩個三角形全等或面積相等的兩個三角形全等.解略. 6.鞏固練習 :P20 練習第1 , 2題 7.教學反思: (1) 掌握邏輯聯(lián)結詞“或、且”的含義 (2) 正確應用邏輯聯(lián)結詞“或、且”解決問題 (3) 掌握真值表并會應用真值表解決問題 p q P∧q P∨q 真 真 真 真 真 假 假 真 假 真 假 真 假 假 假 假- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 1.3 簡單的邏輯聯(lián)結詞教案 北師大版選修2-1 2019 2020 年高 數(shù)學 簡單 邏輯 聯(lián)結 教案 北師大 選修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-2385366.html