2019-2020年高二數(shù)學(xué) 《平面向量概念及運(yùn)算2》教案 滬教版.doc
《2019-2020年高二數(shù)學(xué) 《平面向量概念及運(yùn)算2》教案 滬教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高二數(shù)學(xué) 《平面向量概念及運(yùn)算2》教案 滬教版.doc(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高二數(shù)學(xué) 《平面向量概念及運(yùn)算2》教案 滬教版 教師: 學(xué)生: 時(shí)間: 年 月 日 1、 授課內(nèi)容: 平面向量概念及運(yùn)算 2、 目的與考點(diǎn)分析: 3、 授課內(nèi)容: (1) 知識(shí)點(diǎn)回顧: (2) 典型題型分析講解: 創(chuàng)設(shè)問題情景 問題一、已知向量. (1)在坐標(biāo)平面上,畫出向量;并求= ; (2)若向量終點(diǎn)Q坐標(biāo)為,則向量的始點(diǎn)P坐標(biāo)為_______; (3)向量的模與兩點(diǎn)P、Q間距離關(guān)系是 . 若 ,則 練習(xí)1:已知向量,求 [說明] 在問題一中,先給出向量,要求學(xué)生在坐標(biāo)平面上畫出向量,增強(qiáng)數(shù)形結(jié)合的解題意識(shí),感悟向量的模即平面上兩點(diǎn)的距離.由此發(fā)現(xiàn)并掌握向量模的求法及幾何意義.安排(2)小問的目的在于復(fù)習(xí)鞏固位置向量與自由向量的概念,體會(huì)并感悟到任何一個(gè)自由向量都可轉(zhuǎn)化為位置向量.通過自由向量與位置向量的學(xué)習(xí),引出向量平行的概念. 向量平行的概念:對(duì)任意兩個(gè)向量,若存在一個(gè)常數(shù),使得成立,則兩向量與向量平行,記為:. 問題探究反思 問題二.在坐標(biāo)平面上描出下列三點(diǎn),完成下列問題: (1)請(qǐng)把下列向量的坐標(biāo)與模填在表格內(nèi): 向量坐標(biāo) (1,2) (2,4) (3,6) 向量的模 (2)通過畫圖,你得出什么結(jié)論? 三點(diǎn)A、B、C在一條直線上 (3)分析表格中向量的模,你發(fā)現(xiàn)了什么? (4)分析表格中向量,你還發(fā)現(xiàn)了什么? ,, [說明] 養(yǎng)成解題后反思的習(xí)慣,總結(jié)如何判斷三點(diǎn)共線? 方法一:計(jì)算三個(gè)向量的模長關(guān)系. 方法二:看兩個(gè)非零向量之間是否存在非零常數(shù). (5)分析表格中向量坐標(biāo),你又發(fā)現(xiàn)了什么? 向量坐標(biāo)之間存在比例關(guān)系. 思考:如果向量用坐標(biāo)表示為,則是的( )條件. A、充要 B、必要不充分 C、充分不必要 D、既不充分也不必要 由此,通過改進(jìn)引出 課本例5 若是兩個(gè)非零向量,且, 則的充要條件是. 分析:代數(shù)證明的方法與技巧,嚴(yán)密、嚴(yán)謹(jǐn). 證明:分兩步證明, (Ⅰ)先證必要性: 非零向量存在非零實(shí)數(shù),使得,即 ,化簡整理可得:,消去即得 (Ⅱ)再證充分性: (1)若,則、、、全不為零,顯然有,即 (2)若,則、、、中至少有兩個(gè)為零. ①如果,則由是非零向量得出一定有,, 又由是非零向量得出,從而,此時(shí)存在使,即 ②如果,則有,同理可證 綜上,當(dāng)時(shí),總有 所以,命題得證. [說明] 本題是一典型的代數(shù)證明,推理嚴(yán)密,層次清楚,要求較高,是培養(yǎng)數(shù)學(xué)思維能力的良好范例. 練習(xí)2: 1.已知向量,,且,則x為_________; 2.設(shè)=(x1,y1),=(x2,y2),則下列與共線的充要條件的有( ) ① 存在一個(gè)實(shí)數(shù)λ,使=λ或=λ; ②;③(+)//(-) A、0個(gè) B、1個(gè) C、2個(gè) D、3個(gè) 3.設(shè)為單位向量,有以下三個(gè)命題:(1)若為平面內(nèi)的某個(gè)向量,則;(2)若與平行,則;(3)若與平行且,則.上述命題中,其中假命題的序號(hào)為 ; [說明] 安排此組練習(xí)快速鞏固所學(xué)基礎(chǔ)知識(shí),當(dāng)堂消化,及時(shí)反饋. 知識(shí)拓展應(yīng)用 問題三:已知向量,且A、B、C三點(diǎn)共線,則k=____ (學(xué)生討論與分析) [說明] 三點(diǎn)共線的證明方法總結(jié): 法一:利用向量的模的等量關(guān)系 法二:若A、B、C三點(diǎn)滿足,則A、B、C三點(diǎn)共線. *法三:若A、B、C三點(diǎn)滿足,當(dāng)時(shí),A、B、C三點(diǎn)共線. 四、總結(jié): 五、課后作業(yè): 6、 學(xué)生對(duì)于本次課的評(píng)價(jià): 意見: 學(xué)生簽字: 7、 教師評(píng)定: 1、學(xué)生上次作業(yè)評(píng)價(jià): 好 較好 一般 差 2、學(xué)生本次上課情況評(píng)價(jià): 好 較好 一般 差 教師簽字: 主任簽字: 蓋章處- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 平面向量概念及運(yùn)算2 2019-2020年高二數(shù)學(xué) 平面向量概念及運(yùn)算2教案 滬教版 2019 2020 年高 數(shù)學(xué) 平面 向量 概念 運(yùn)算 教案
鏈接地址:http://ioszen.com/p-2425023.html