《2019-2020年高三數(shù)學(xué)經(jīng)典示范 單調(diào)性與最大(小)值(1)教案 新人教A版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)經(jīng)典示范 單調(diào)性與最大(小)值(1)教案 新人教A版.doc(13頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)經(jīng)典示范 單調(diào)性與最大(?。┲担?)教案 新人教A版
教學(xué)分析
在研究函數(shù)的性質(zhì)時(shí),單調(diào)性和最值是一個(gè)重要內(nèi)容.實(shí)際上,在初中學(xué)習(xí)函數(shù)時(shí),已經(jīng)重點(diǎn)研究了一些函數(shù)的增減性,只是當(dāng)時(shí)的研究較為粗略,未明確給出有關(guān)函數(shù)增減性的定義,對于函數(shù)增減性的判斷也主要根據(jù)觀察圖象得出,而本小節(jié)內(nèi)容,正是初中有關(guān)內(nèi)容的深化和提高:給出函數(shù)在某個(gè)區(qū)間上是增函數(shù)或減函數(shù)的定義,明確指出函數(shù)的增減性是相對于某個(gè)區(qū)間來說的,還說明判斷函數(shù)的增減性既有從圖象上進(jìn)行觀察的較為粗略的方法,又有根據(jù)定義進(jìn)行證明的較為嚴(yán)格的方法、最好根據(jù)圖象觀察得出猜想,用推理證明猜想的正確性,這樣就將以上兩種方法統(tǒng)一起來了.
由于函數(shù)圖象是發(fā)現(xiàn)函數(shù)性質(zhì)的直觀載體,因此,在本節(jié)教學(xué)時(shí)可以充分使用信息技術(shù)創(chuàng)設(shè)教學(xué)情境,以利于學(xué)生作函數(shù)圖象,有更多的時(shí)間用于思考、探究函數(shù)的單調(diào)性、最值等性質(zhì).還要特別重視讓學(xué)生經(jīng)歷這些概念的形成過程,以便加深對單調(diào)性和最值的理解.
三維目標(biāo)
1.函數(shù)單調(diào)性的研究經(jīng)歷了從直觀到抽象,以圖識數(shù)的過程,在這個(gè)過程中,讓學(xué)生通過自主探究活動,體驗(yàn)數(shù)學(xué)概念的形成過程的真諦,學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì).
2.理解并掌握函數(shù)的單調(diào)性及其幾何意義,掌握用定義證明函數(shù)單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力.
3.通過實(shí)例,使學(xué)生體會、理解到函數(shù)的最大(小)值及其幾何意義,能夠借助函數(shù)圖象的直觀性得出函數(shù)的最值,培養(yǎng)以形識數(shù)的解題意識.
4.能夠用函數(shù)的性質(zhì)解決日常生活中的簡單的實(shí)際問題,使學(xué)生感受到學(xué)習(xí)函數(shù)單調(diào)性的必要性與重要性,增強(qiáng)學(xué)生學(xué)習(xí)函數(shù)的緊迫感,激發(fā)學(xué)生學(xué)習(xí)的積極性.
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):函數(shù)的單調(diào)性和最值.
教學(xué)難點(diǎn):增函數(shù)、減函數(shù)、奇函數(shù)、偶函數(shù)形式化定義的形成.
課時(shí)安排
2課時(shí)
設(shè)計(jì)方案(一)
教學(xué)過程
第1課時(shí) 函數(shù)的單調(diào)性
導(dǎo)入新課
思路1.德國有一位著名的心理學(xué)家名叫艾賓浩斯(Hermann Ebbinghaus,1850~1909),他以自己為實(shí)驗(yàn)對象,共做了163次實(shí)驗(yàn),每次實(shí)驗(yàn)連續(xù)要做兩次無誤的背誦.經(jīng)過一定時(shí)間后再重學(xué)一次,達(dá)到與第一次學(xué)會的同樣的標(biāo)準(zhǔn).他經(jīng)過對自己的測試,得到了一些數(shù)據(jù).
時(shí)間間隔t
0分鐘
20分鐘
60分鐘
8~9小時(shí)
1天
2天
6天
一個(gè)月
記憶量y(百分比)
100%
58.2%
44.2%
35.8%
33.7%
27.8%
25.4%
21.1%
觀察這些數(shù)據(jù),可以看出:記憶量y是時(shí)間間隔t的函數(shù).當(dāng)自變量(時(shí)間間隔t)逐漸增大時(shí),你能看出對應(yīng)的函數(shù)值(記憶量y)有什么變化趨勢嗎?描出這個(gè)函數(shù)圖象的草圖(這就是著名的艾賓浩斯曲線).從左向右看,圖象是上升的還是下降的?你能用數(shù)學(xué)符號來刻畫嗎?通過這個(gè)實(shí)驗(yàn),你打算以后如何對待剛學(xué)過的知識?(可以借助信息技術(shù)畫圖象)
圖1-3-1-1
學(xué)生:先思考或討論,回答:記憶量y隨時(shí)間間隔t的增大而增大;以時(shí)間間隔t為x軸,以記憶量y為y軸建立平面直角坐標(biāo)系,描點(diǎn)連線得函數(shù)的草圖——艾賓浩斯遺忘曲線如圖1-3-1-1所示.
遺忘曲線是一條衰減曲線,它表明了遺忘的規(guī)律.隨著時(shí)間的推移,記憶保持量在遞減,剛開始遺忘速度最快,我們應(yīng)利用這一規(guī)律,在學(xué)習(xí)新知識時(shí)一定要及時(shí)復(fù)習(xí)鞏固,加深理解和記憶.教師提示、點(diǎn)撥,并引出本節(jié)課題.
思路2.在第23屆奧運(yùn)會上,中國首次參加就獲15枚金牌;在第24屆奧運(yùn)會上,中國獲5枚金牌;在第25屆奧運(yùn)會上,中國獲16枚金牌;在第26屆奧運(yùn)會上,中國獲16枚金牌;在第27屆奧運(yùn)會上,中國獲28枚金牌;在第28屆奧運(yùn)會上,中國獲32枚金牌.按這個(gè)變化趨勢,xx年,在北京舉行的第29屆奧運(yùn)會上,請你預(yù)測一下中國能獲得多少枚金牌?
學(xué)生回答(只要大于32就可以算準(zhǔn)確),教師:提示、點(diǎn)撥,并引出本節(jié)課題.
推進(jìn)新課
新知探究
提出問題
①如圖1-3-1-2所示為一次函數(shù)y=x,二次函數(shù)y=x2和y=-x2的圖象,它們的圖象有什么變化規(guī)律?這反映了相應(yīng)的函數(shù)值的哪些變化規(guī)律?
圖1-3-1-2
②函數(shù)圖象上任意點(diǎn)P(x,y)的坐標(biāo)有什么意義?
③如何理解圖象是上升的?
④對于二次函數(shù)y=x2,列出x,y的對應(yīng)值表(1).完成表(1)并體會圖象在y軸右側(cè)上升.
x
-4
-3
-2
-1
0
1
2
3
4
f(x)=x2
表(1)
⑤在數(shù)學(xué)上規(guī)定:函數(shù)y=x2在區(qū)間(0,+∞)上是增函數(shù).誰能給出增函數(shù)的定義?
⑥增函數(shù)的定義中,把“當(dāng)x1
x2時(shí),都有f(x1)>f(x2)”,這樣行嗎?
⑦增函數(shù)的定義中,“當(dāng)x1x2時(shí),都有f(x1)>f(x2)”都是相同的不等號“>”,也就是說前面是“>”,后面也是“>”,步調(diào)一致.因此我們可以簡稱為:步調(diào)一致增函數(shù).
⑦函數(shù)值隨著自變量的增大而增大;從左向右看,圖象是上升的.
⑧從左向右看,圖象是上升的.
⑨一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)某個(gè)區(qū)間D上的任意兩個(gè)自變量的值x1、x2,當(dāng)x1f(x2),那么就說函數(shù)f(x)在區(qū)間D上是減函數(shù).簡稱為:步調(diào)不一致減函數(shù).減函數(shù)的幾何意義:從左向右看,圖象是下降的.函數(shù)值變化趨勢:函數(shù)值隨著自變量的增大而減小.總結(jié):如果函數(shù)y=f(x)在區(qū)間D上是增函數(shù)(或減函數(shù)),那么就說函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,區(qū)間D叫做y=f(x)的單調(diào)遞增(或減)區(qū)間.
⑩函數(shù)y=f(x)在區(qū)間D上,函數(shù)值的變化趨勢是隨自變量的增大而增大(減小),幾何意義:從左向右看,圖象是上升(下降)的.
應(yīng)用示例
思路1
例1如圖1-3-1-3是定義在區(qū)間[-5,5]上的函數(shù)y=f(x),根據(jù)圖象說出函數(shù)的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,它是增函數(shù)還是減函數(shù)?
圖1-3-1-3
活動:教師提示利用函數(shù)單調(diào)性的幾何意義.學(xué)生先思考或討論后再回答,教師點(diǎn)撥、提示并及時(shí)評價(jià)學(xué)生.圖象上升則在此區(qū)間上是增函數(shù),圖象下降則在此區(qū)間上是減函數(shù).
解:函數(shù)y=f(x)的單調(diào)區(qū)間是[-5,2),[-2,1),[1,3),[3,5].其中函數(shù)y=f(x)在區(qū)間[-5,2),[1,3)上是減函數(shù),在區(qū)間[-2,1),[3,5]上是增函數(shù).
點(diǎn)評:本題主要考查函數(shù)單調(diào)性的幾何意義,以及圖象法判斷函數(shù)單調(diào)性.圖象法判斷函數(shù)的單調(diào)性適合于選擇題和填空題.如果解答題中給出了函數(shù)的圖象,通常用圖象法判斷單調(diào)性.函數(shù)的圖象類似于人的照片,我們能根據(jù)人的照片來估計(jì)其身高,同樣我們根據(jù)函數(shù)的圖象可以分析出函數(shù)值的變化趨勢即單調(diào)性.
圖象法求函數(shù)單調(diào)區(qū)間的步驟是第一步:畫函數(shù)的圖象;第二步:觀察圖象,利用函數(shù)單調(diào)性的幾何意義寫出單調(diào)區(qū)間.
變式訓(xùn)練
課本P32練習(xí)1、3.
例2物理學(xué)中的玻意耳定律p=(k為正常數(shù))告訴我們,對于一定量的氣體,當(dāng)其體積V減少時(shí),壓強(qiáng)p將增大.試用函數(shù)的單調(diào)性證明.
活動:學(xué)生先思考或討論,再到黑板上書寫.當(dāng)學(xué)生沒有證明思路時(shí),教師再提示,及時(shí)糾正學(xué)生解答過程出現(xiàn)的問題,并標(biāo)出關(guān)鍵的地方,以便學(xué)生總結(jié)定義法的步驟.體積V減少時(shí),壓強(qiáng)p將增大是指函數(shù)p=是減函數(shù);刻畫體積V減少時(shí),壓強(qiáng)p將增大的方法是用不等式表達(dá).已知函數(shù)的解析式判斷函數(shù)的單調(diào)性時(shí),常用單調(diào)性的定義來解決.
解:利用函數(shù)單調(diào)性的定義只要證明函數(shù)p=在區(qū)間(0,+∞)上是減函數(shù)即可.
點(diǎn)評:本題主要考查函數(shù)的單調(diào)性,以及定義法判斷函數(shù)的單調(diào)性.
定義法判斷或證明函數(shù)的單調(diào)性的步驟是第一步:在所給的區(qū)間上任取兩個(gè)自變量x1和x2,通常令x10.∴f(x1)-f(x2)<0.∴f(x1)2m-x2≥a,
f(x1)-f(x2)=f(2m-x1)-f(2m-x2).
又∵函數(shù)y=f(x)在[a,b]上是增函數(shù),∴f(2m-x1)-f(2m-x2)>0.
∴f(x1)-f(x2)>0.∴f(x1)>f(x2).
∴函數(shù)y=f(x)在區(qū)間[2m-b,2m-a]上是減函數(shù).
∴當(dāng)函數(shù)y=f(x)在對稱軸直線x=m的右側(cè)一個(gè)區(qū)間[a,b]上是增函數(shù)時(shí),其在[a,b]關(guān)于直線x=m的對稱區(qū)間[2m-b,2m-a]上是減函數(shù),即單調(diào)性相反.
因此有結(jié)論:如果函數(shù)y=f(x)的圖象關(guān)于直線x=m對稱,那么函數(shù)y=f(x)在對稱軸兩側(cè)的對稱單調(diào)區(qū)間內(nèi)具有相反的單調(diào)性.
點(diǎn)評:本題通過歸納——猜想——證明得到了正確的結(jié)論,這是我們認(rèn)識世界發(fā)現(xiàn)問題的主要方法,這種方法的難點(diǎn)是猜想,突破路徑是尋找共同的特征.本題作為結(jié)論記住,可以提高解題速度.圖象類似于人的照片,看見人的照片就能估計(jì)這個(gè)人的身高、五官等特點(diǎn),同樣根據(jù)函數(shù)的圖象也能觀察出函數(shù)的性質(zhì)特征.這需要有細(xì)致的觀察能力.
變式訓(xùn)練
函數(shù)y=f(x)滿足以下條件:
①定義域是R;
②圖象關(guān)于直線x=1對稱;
③在區(qū)間[2,+∞)上是增函數(shù).
試寫出函數(shù)y=f(x)的一個(gè)解析式f(x)=(只需寫出一個(gè)即可,不必考慮所有情況).
活動:根據(jù)這三個(gè)條件,畫出函數(shù)y=f(x)的圖象簡圖(只要能體現(xiàn)這三個(gè)條件即可),再根據(jù)圖象簡圖,聯(lián)系猜想基本初等函數(shù)及其圖象和已有的解題經(jīng)驗(yàn)寫出.
解:定義域是R的函數(shù)解析式通常不含分式或根式,常是整式;圖象關(guān)于直線x=1對稱的函數(shù)解析式滿足:f(x)=f(2-x),基本初等函數(shù)中有對稱軸的僅有二次函數(shù),則由①②想到了二次函數(shù);結(jié)合二次函數(shù)的圖象,在區(qū)間[2,+∞)上是增函數(shù)說明開口必定向上,且正好滿足二次函數(shù)的對稱軸直線x=1不在區(qū)間[2,+∞)內(nèi),故函數(shù)的解析式可能是y=a(x-1)2+b(a>0).
結(jié)合二次函數(shù)的圖象和性質(zhì),可知這三條都可滿足開口向上的拋物線,故有:
形如y=a(x-1)2+b(a>0),或?yàn)閥=a|x-1|+b(a>0)等都可以,答案不唯一.
知能訓(xùn)練
課本P32練習(xí)2.
【補(bǔ)充練習(xí)】
1.利用圖象法寫出基本初等函數(shù)的單調(diào)性.
解:①正比例函數(shù):y=kx(k≠0)
當(dāng)k>0時(shí),函數(shù)y=kx在定義域R上是增函數(shù);當(dāng)k<0時(shí),函數(shù)y=kx在定義域R上是減函數(shù).
②反比例函數(shù):y=(k≠0)
當(dāng)k>0時(shí),函數(shù)y=的單調(diào)遞減區(qū)間是(-∞,0),(0,+∞),不存在單調(diào)遞增區(qū)間;當(dāng)k<0時(shí),函數(shù)y=的單調(diào)遞增區(qū)間是(-∞,0),(0,+∞),不存在單調(diào)遞減區(qū)間.
③一次函數(shù):y=kx+b(k≠0)
當(dāng)k>0時(shí),函數(shù)y=kx+b在定義域R上是增函數(shù);當(dāng)k<0時(shí),函數(shù)y=kx+b在定義域R上是減函數(shù).
④二次函數(shù):y=ax2+bx+c(a≠0)
當(dāng)a>0時(shí),函數(shù)y=ax2+bx+c的單調(diào)遞減區(qū)間是(-∞,],單調(diào)遞增區(qū)間是[,+∞);
當(dāng)a<0時(shí),函數(shù)y=ax2+bx+c的單調(diào)遞減區(qū)間是[,+∞),單調(diào)遞增區(qū)間是(-∞,].
點(diǎn)評:以上基本初等函數(shù)的單調(diào)性作為結(jié)論記住,可以提高解題速度.
2.已知函數(shù)y=kx+2在R上是增函數(shù),求實(shí)數(shù)k的取值范圍.
答案:k∈(0,+∞).
3.二次函數(shù)f(x)=x2-2ax+m在(-∞,2)上是減函數(shù),在(2,+∞)上是增函數(shù),求實(shí)數(shù)a的值.
答案:a=2.
4.xx年全國高中數(shù)學(xué)聯(lián)賽試卷,8已知f(x)是定義在(0,+∞)上的減函數(shù),若f(2a2+a+1)1.
∵f(x)在(0,+∞)上是減函數(shù),
∴2a2+a+1>3a2-4a+1.∴a2-5a<0.
∴00)的圖象,能說出這個(gè)函數(shù)分別在哪個(gè)區(qū)間為增函數(shù)和減函數(shù)嗎?
圖1-3-1-10
設(shè)計(jì)意圖:使學(xué)生體會到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性.
問題④:如何從解析式的角度說明f(x)=x2在[0,+∞)上為增函數(shù)?
設(shè)計(jì)意圖:把對單調(diào)性的認(rèn)識由感性上升到理性的高度,完成對概念的第二次認(rèn)識.事實(shí)上也給出了證明單調(diào)性的方法,為第三階段的學(xué)習(xí)作好鋪墊.
問題⑤:你能用準(zhǔn)確的數(shù)學(xué)符號語言表述出增函數(shù)的定義嗎?
設(shè)計(jì)意圖:讓學(xué)生由特殊到一般,從具體到抽象歸納出單調(diào)性的定義,通過對判斷題的辨析,加深學(xué)生對定義的理解,完成對概念的第三次認(rèn)識.
活動:先讓學(xué)生思考或討論后再回答,經(jīng)教師提示、點(diǎn)撥,對回答正確的學(xué)生及時(shí)表揚(yáng),對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路.
引導(dǎo)方法與過程:問題①:引導(dǎo)學(xué)生進(jìn)行分類描述圖象是上升的、下降的(增函數(shù)、減函數(shù)),同時(shí)明確函數(shù)的圖象變化(單調(diào)性)是對定義域內(nèi)某個(gè)區(qū)間而言的,是函數(shù)的局部性質(zhì).
問題②:這種認(rèn)識是從圖象的角度得到的,是對函數(shù)單調(diào)性的直觀、描述性的認(rèn)識.
學(xué)生的困難是難以確定分界點(diǎn)的確切位置.
問題③:通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時(shí)不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究.
問題④:對于學(xué)生錯誤的回答,引導(dǎo)學(xué)生分別用圖形語言和文字語言進(jìn)行辨析,使學(xué)生認(rèn)識到問題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個(gè)自變量x1、x2.
問題⑤:師生共同探究:利用不等式表示變大或變小,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類比得出減函數(shù)的定義.
歸納總結(jié):1.函數(shù)單調(diào)性的幾何意義:如果函數(shù)y=f(x)在區(qū)間D上是增(減)函數(shù),那么在區(qū)間D上的圖象是上升的(下降的).
2.函數(shù)單調(diào)性的定義:略.可以簡稱為步調(diào)一致增函數(shù),步調(diào)相反減函數(shù).
討論結(jié)果:①(1)函數(shù)y=x+2,在整個(gè)定義域內(nèi)y隨x的增大而增大;函數(shù)y=-x+2,在整個(gè)定義域內(nèi)y隨x的增大而減小.(2)函數(shù)y=x2,在[0,+∞)上y隨x的增大而增大,在(-∞,0)上y隨x的增大而減小.(3)函數(shù)y=,在(0,+∞)上y隨x的增大而減小,在(-∞,0)上y隨x的增大而減小.
②如果函數(shù)f(x)在某個(gè)區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)f(x)在該區(qū)間上為增函數(shù);如果函數(shù)f(x)在某個(gè)區(qū)間上隨自變量x的增大,y越來越小,我們說函數(shù)f(x)在該區(qū)間上為減函數(shù).
③不能.
④(1)在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如2和3,因?yàn)?2<32,所以f(x)=x2在[0,+∞)上為增函數(shù).
(2)仿(1),取多組數(shù)值驗(yàn)證均滿足,所以f(x)=x2在[0,+∞)上為增函數(shù).
(3)任取x1、x2∈[0,+∞),且x10,能斷定函數(shù)f(x)在區(qū)間(a,b)上是增函數(shù)嗎?
活動:引導(dǎo)學(xué)生分析這種敘述與定義的等價(jià)性.讓學(xué)生嘗試用這種等價(jià)形式證明函數(shù)f(x)=x在[0,+∞)上是增函數(shù).
討論結(jié)果:能.
例2用計(jì)算機(jī)畫出函數(shù)y=的圖象,根據(jù)圖象指出單調(diào)區(qū)間,并用定義法證明.
思路分析:在圖象上觀察在哪個(gè)區(qū)間函數(shù)圖象是上升的,在哪個(gè)區(qū)間函數(shù)圖象是下降的,借助于單調(diào)性的幾何意義寫出單調(diào)區(qū)間,再用定義證明.
教師畫出圖象,學(xué)生回答,如果遇到障礙,就提示利用函數(shù)單調(diào)性的幾何意義寫出單調(diào)區(qū)間.
點(diǎn)評:討論函數(shù)單調(diào)性的三部曲:
第一步,畫函數(shù)的圖象;
第二步,借助單調(diào)性的幾何意義寫出單調(diào)區(qū)間;
第三步,利用定義加以證明.
答案:略.
變式訓(xùn)練
畫出函數(shù)y=的圖象,根據(jù)圖象指出單調(diào)區(qū)間.
活動:教師引導(dǎo)學(xué)生利用變換法(也可以用計(jì)算機(jī))畫出圖象,根據(jù)單調(diào)性的幾何意義寫出單調(diào)區(qū)間,再利用定義法證明.
答案:略.
知能訓(xùn)練
課本P32練習(xí)2.
拓展提升
試分析函數(shù)y=x+的單調(diào)性.
活動:先用計(jì)算機(jī)畫出圖象,找出單調(diào)區(qū)間,再用定義法證明.
答案:略.
課堂小結(jié)
學(xué)生交流在本節(jié)課學(xué)習(xí)中的體會、收獲,交流學(xué)習(xí)過程中的體驗(yàn)和感受,師生合作共同完成小結(jié).
(1)概念探究過程:直觀到抽象、特殊到一般、感性到理性.
(2)證明方法和步驟:設(shè)元、作差、變形、斷號、定論.
(3)數(shù)學(xué)思想方法:數(shù)形結(jié)合.
(4)函數(shù)單調(diào)性的幾何意義是:函數(shù)值的變化趨勢,即圖象是上升的或下降的.
設(shè)計(jì)感想
本節(jié)課是函數(shù)單調(diào)性的起始課,采用教師啟發(fā)引導(dǎo),學(xué)生探究學(xué)習(xí)的教學(xué)方法,通過創(chuàng)設(shè)情境,引導(dǎo)探究,師生交流,最終形成概念,獲得方法.本節(jié)課使用了多媒體投影和計(jì)算機(jī)來輔助教學(xué),為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的理解和認(rèn)識.
考慮到部分學(xué)生數(shù)學(xué)基礎(chǔ)較好、思維較為活躍的特點(diǎn),對判斷方法進(jìn)行適當(dāng)?shù)难诱梗由顚Χx的理解,同時(shí)也為用導(dǎo)數(shù)研究函數(shù)單調(diào)性埋下伏筆.
作業(yè):課本P39習(xí)題1.3A組2、3、4.
鏈接地址:http://ioszen.com/p-2533734.html