書簽
分享
收藏
舉報
版權申訴
/ 2
2019-2020年高中數(shù)學 重要不等式習題課導學案設計 北師大必修5.doc
《2019-2020年高中數(shù)學 重要不等式習題課導學案設計 北師大必修5.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 重要不等式習題課導學案設計 北師大必修5.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 重要不等式習題課導學案設計 北師大必修5 第 章第節(jié) 課題名稱 基本不等式習題課 授課時間 第 周星期 第 節(jié) 課型 新授課 主備課人 衛(wèi)娟蓮 學習目標 使學生能夠運用均值不等式定理來討論函數(shù)的最大值和最小值問題。 重點難點 均值不等式定理的應用。 學習過程 與方法 1. 自主學習: (1)的最小值為_______.(2) x =____時,有最小值_____. (3) x =____ (x>0)時,有最小值_____. (4)設,則 的最小值為_____ (5)如果 , 則的最小值為__________. ①當x>1時,求函數(shù)y=x+的最小值 問題:x>8時?為什么 總結:在利用基本不等式求最值時“一正、二定、三相等” 的條件一定要逐一認真驗證 ②求下列函數(shù)的值域 (1)y=3x 2+ (2)y=x+ 2. 精講互動: 例1:求下列函數(shù)的值域 (1)y = (2)y = 做此類的方法是:對分式型的函數(shù),我們可以先進行“換元”,“分離常數(shù)”,然后考慮應用基本不等式求解。 例2:(1)已知:0< x <2, 求函數(shù) 最大值, 并求函數(shù)取最大值時x的值 (2)已知 則函數(shù) y = x (1- 4x) 的最大值為_______. (3)函數(shù) () 的最大值是_____, 此時x=____. 一般說來,積的形式存在最大值,湊和為常數(shù),要注意定理及變形的應用 3. 達標訓練: (1)求函數(shù)y = (x≠0)的最大值。 (2)已知函數(shù)y = (3x+2)(1-3x)①當-<x<時,求函數(shù)的最大值; ②當0≤x≤時,求函數(shù)的最大、最小值。 (3)已知:0< x <1 求函數(shù) 的最大值, 并求函數(shù)取最大值時x的值 課堂小結 一般說來,和式形式存在最小值,湊積為常數(shù);積的形式存在最大值,湊和為常數(shù),要注意定理及變形的應用 作業(yè)布置 求下列函數(shù)的最大值 (1)y=2x(1-2x)(0<x<) (2)y=2x(1-3x)(0<x<) (3)已知 x> -1, 求函數(shù)的最小值 (選做題)函數(shù) 的最小值為________ ,此時x=____. 課后反思 審核 備課組(教研組): 教務處:- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 重要不等式習題課導學案設計 北師大必修5 2019 2020 年高 數(shù)學 重要 不等式 習題 課導學案 設計 北師大 必修
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-2739915.html