大型回轉(zhuǎn)支撐套圈端面加工翻轉(zhuǎn)裝置設(shè)計7張CAD圖
大型回轉(zhuǎn)支撐套圈端面加工翻轉(zhuǎn)裝置設(shè)計7張CAD圖,大型,回轉(zhuǎn),支撐,端面,加工,翻轉(zhuǎn),裝置,設(shè)計,CAD
設(shè)計(XX)任務(wù)書
Ⅰ、畢業(yè)設(shè)計(論文)題目:
大型回轉(zhuǎn)支撐套圈端面加工翻轉(zhuǎn)裝置設(shè)計
Ⅱ、畢業(yè)設(shè)計(論文)工作內(nèi)容(從專業(yè)知識的綜合運用、論文框架的設(shè)計、文獻(xiàn)
資料的收集和應(yīng)用、觀點創(chuàng)新等方面詳細(xì)說明):
翻轉(zhuǎn)裝置是工業(yè)生產(chǎn)中的重要組成部分,它可以顯著減輕工人的勞動強(qiáng)度,改善勞動條件,保證產(chǎn)品質(zhì)量,實現(xiàn)安全生產(chǎn),對提高生產(chǎn)的自動化水平和提高勞動生產(chǎn)率具有重要意義。本課題擬針對風(fēng)力發(fā)電、軍工雷達(dá)、醫(yī)療機(jī)械等相關(guān)行業(yè)對回轉(zhuǎn)支承加工精度要求高的特點,開展回轉(zhuǎn)支承端面加工翻轉(zhuǎn)裝置的設(shè)計工作。
本課題從翻轉(zhuǎn)裝置的方案選擇、翻轉(zhuǎn)裝置中的夾緊液壓缸的設(shè)計、缸筒和活塞桿的校核、機(jī)架的校核、翻轉(zhuǎn)液壓缸的設(shè)計、翻轉(zhuǎn)過程中用到的液壓回路的設(shè)計等以及簡單介紹三維軟件 Solidworks2014,并利用 Solidworks2014 建立各個模型, 并進(jìn)行了裝配表明設(shè)計的翻轉(zhuǎn)裝置滿足工作要求。
(一)設(shè)計說明書內(nèi)容1.總論部分
A. 課題研究的背景和研究意義,通過對翻轉(zhuǎn)裝置的比較和選擇對翻轉(zhuǎn)裝置進(jìn)行結(jié)
構(gòu)設(shè)計。
B. 制定研究方案 C.設(shè)計要求,主要技術(shù)參數(shù)。2 主體部分
主要是基于翻轉(zhuǎn)裝置的研究最終實現(xiàn)對的研究,最終實現(xiàn)對翻轉(zhuǎn)裝置的控制。論文具體研究的控制論文具體研究內(nèi)容如下:
A. 翻轉(zhuǎn)裝置 總體設(shè)計方案
以液壓驅(qū)動方式為出發(fā)點對翻轉(zhuǎn)裝置 進(jìn)行設(shè)計。先由回轉(zhuǎn)支承加工藝特點說明進(jìn)行設(shè)計。先由回轉(zhuǎn)支承加工藝特點說明使用回轉(zhuǎn)支承的必要性,再根據(jù)所加工最大回轉(zhuǎn)支承尺寸,確定作臺的所加工最大回轉(zhuǎn)支承尺寸,確定作臺的設(shè)計所需的夾緊液壓缸 ,選擇合適的翻轉(zhuǎn),確定機(jī)架的尺寸。
B. 液壓傳動系統(tǒng)分析
簡單介紹控制系統(tǒng)為液壓驅(qū)動,選擇合適的同步回路以及夾緊回路,還有翻轉(zhuǎn)剛的回路。
C. 三維建模
對設(shè)計的內(nèi)容進(jìn)行三維建模,并對各個零件進(jìn)行裝配。
3 專題部分
回轉(zhuǎn)支承的設(shè)計:根據(jù)課題給定的回轉(zhuǎn)支承的范圍,選擇回轉(zhuǎn)支承的最大尺寸進(jìn)行設(shè)計。
卡爪和轉(zhuǎn)盤的設(shè)計:根據(jù)回轉(zhuǎn)支承的尺寸來確定卡爪和轉(zhuǎn)盤的尺寸,在根據(jù)工作的情況來設(shè)計軌道形狀以及尺寸。
機(jī)架的設(shè)計:設(shè)計出機(jī)架的形狀以及尺寸,再進(jìn)行校核使其滿足工作需要。夾緊缸的設(shè)計:根據(jù)回轉(zhuǎn)支承的重量選擇合適的夾緊液壓缸,并進(jìn)行夾緊液
壓缸各個零件的設(shè)計。例如活塞桿,缸筒等的設(shè)計。
翻轉(zhuǎn)缸的設(shè)計:根據(jù)工作情況選擇一個合適的雙作用液壓缸。
液壓回路的設(shè)計:根據(jù)工作的情況,選擇合適的同步回路以及夾緊回路,還有翻轉(zhuǎn)剛的回路。
各個零部件的建模和裝配:用 solidworks2014 對翻轉(zhuǎn)裝置的各個零部件進(jìn)行建模,然后把各個零件裝配在一起。
4. 摘要與翻譯
5. 目錄與參考資料
設(shè)計說明書的書寫應(yīng)清楚、工整,有條件的話,全部用電腦打印為佳。
(二)繪圖內(nèi)容
對各個零部件用 solidworks 進(jìn)行三維建模,并裝配。
(三)外文資料翻譯(中文譯文不少于 5000 漢字)。
Ⅲ、進(jìn)度安排:
2014 年 10 月 20 日~2013 年 11 月 9 日(3 周):選擇題目,收集材料,聯(lián)系落實畢業(yè)實習(xí)單位,填寫畢業(yè)設(shè)計任務(wù)書;
2014 年 11 月 10 日~2013 年 12 月 7 日(4 周):布置任務(wù),明確目標(biāo)、制定計劃,確定初步畢業(yè)設(shè)計方案;
2014 年 12 月 8 日~2015 年 1 月 4 日(4 周):深化初步方案,結(jié)合畢業(yè)實習(xí)加深對畢業(yè)設(shè)計方案的認(rèn)識;
2015 年 1 月 5 日~2015 年 1 月 16 日(2 周):學(xué)生畢業(yè)設(shè)計方案進(jìn)一步完善;
2015 年 1 月 17 日~2015 年 3 月 1 日(6 周):繼續(xù)前期工作;
2015 年 3 月 2 日~2015 年 5 月 17 日(11 周):學(xué)生全部返校,進(jìn)行畢業(yè)設(shè)計計算、繪圖,編制畢業(yè)設(shè)計說明書,完成畢業(yè)設(shè)計工作任務(wù)(2015 年 3 月 30 日~2015年4 月 5 日接受學(xué)校畢業(yè)設(shè)計期中檢查);
2015 年 5 月 18 日~2015 年 5 月 31 日(2 周):畢業(yè)成果預(yù)提交、修改、評閱、答辯。
Ⅳ、主要參考資料:
(1) 王化清.大型工件的翻轉(zhuǎn)設(shè)備的設(shè)計與應(yīng)用[J].金屬加工冷加工,2O10(1): 42-45
(2) 孫學(xué)平.一種工件翻轉(zhuǎn)裝置的通用設(shè)計方法[J].機(jī)械設(shè)計,2006(1):123-124 (3) 孔偉明.底盤鏈?zhǔn)椒D(zhuǎn)裝置的方案設(shè)計[J].客車技術(shù)與研究,2001(1):23-25 (4)孫學(xué)平.一種工件翻轉(zhuǎn)裝置的通用設(shè)計方法[J].機(jī)械設(shè)計,2006(1):123-124 (5)毛平準(zhǔn)主編.互換性與測量技術(shù)基礎(chǔ)[M].北京:機(jī)械工程出版社,2005
(6)李壯云主編.液壓元件與系統(tǒng)[M].北京:機(jī)械工業(yè)出版社,2005 (7)曾億山.液壓與氣傳動 [M] .合肥:工業(yè)大學(xué)出版社, 2008.
(8) 曹玉寶.工件翻轉(zhuǎn)裝置液壓傳動系統(tǒng)設(shè)計[J].機(jī)床與液壓,2011(4):74-77
(9) 曹玉寶.自動化生產(chǎn)線工件翻轉(zhuǎn)裝置設(shè)計[J].機(jī)械傳動,2010(9):80-85
指導(dǎo)教師:(簽名: ), 年 月 日
學(xué)生姓名:(簽名: ),專業(yè)年級: 11 機(jī)械工程
系負(fù)責(zé)人審核意見(從選題是否符合專業(yè)培養(yǎng)目標(biāo)、是否結(jié)合科研或工程實際、綜合訓(xùn)
練程度、內(nèi)容難度及工作量等方面加以審核):
專業(yè)負(fù)責(zé)人簽字: , 年 月 日
大型回轉(zhuǎn)支撐套圈端面加工
翻轉(zhuǎn)裝置設(shè)計
1回轉(zhuǎn)支撐的介紹
回轉(zhuǎn)支承在現(xiàn)實工業(yè)中應(yīng)用很廣泛,被人們稱為:“機(jī)器的關(guān)節(jié)”,是兩物體之間需作相對回轉(zhuǎn)運動,又需同時承受軸向力、徑向力、傾翻力矩的機(jī)械所必需的重要傳動原件。隨著機(jī)械行業(yè)的迅速發(fā)展,回轉(zhuǎn)支承在船舶設(shè)備、工程機(jī)械、輕工機(jī)械、冶金機(jī)械、醫(yī)療機(jī)械、工業(yè)機(jī)械人、隧道掘進(jìn)機(jī)、旋轉(zhuǎn)舞臺等行業(yè)得到了廣泛的應(yīng)用。
2課題研究的來源
由于大型回轉(zhuǎn)支承體積大,零件截面積小,加工精度高,工序長,易變形,因此加工的難度增大。本課題擬針對風(fēng)力發(fā)電、軍工雷達(dá)、醫(yī)療機(jī)械等相關(guān)行業(yè)對回轉(zhuǎn)支承加工精度要求高的特點,根據(jù)馬鞍山方圓回轉(zhuǎn)支撐股份有限公司現(xiàn)有加工條件,開展回轉(zhuǎn)支撐套圈端面加工翻轉(zhuǎn)設(shè)計工作。
3課題研究的背景
回轉(zhuǎn)支承端面套圈在機(jī)械加工過程中常常需要進(jìn)行翻轉(zhuǎn),由于工件慣性大在翻轉(zhuǎn)的過程中會產(chǎn)生較大的沖擊,因此存在很大的安全隱患,所以需要設(shè)計合理的翻轉(zhuǎn)裝置已實現(xiàn)工件的平穩(wěn)翻轉(zhuǎn)。
傳統(tǒng)的機(jī)械零件加工方法,由于生產(chǎn)工藝落后,工序分散,工件翻轉(zhuǎn)由人力手工完成,從而帶來生產(chǎn)效率低、工人勞動強(qiáng)度大、產(chǎn)品質(zhì)量不穩(wěn)定、生產(chǎn)成本增加等而采用翻轉(zhuǎn)裝置加工制造機(jī)械零件,可以將所有生產(chǎn)環(huán)節(jié)融合,其中的工件翻轉(zhuǎn)由自動化翻轉(zhuǎn)裝置完成,可大幅度減輕工人勞動強(qiáng)度,提高生產(chǎn)效益,改善生產(chǎn)環(huán)境,提高產(chǎn)品質(zhì)量。工件翻轉(zhuǎn)裝置是自動化生產(chǎn)線的重要組成部分,其設(shè)計的好壞直接影響整個自動化生產(chǎn)線的工作水平,因而對工件翻轉(zhuǎn)裝置進(jìn)行合理的設(shè)計就顯得極為重要。自動化制造系統(tǒng)的類型很多,不同的制造系統(tǒng),工件翻轉(zhuǎn)的實現(xiàn)形式也不同,針對少品種、大批量生產(chǎn)的剛性自動線,由于各設(shè)備按一定的生產(chǎn)節(jié)拍生產(chǎn),工件順序通過各個工作位置,自動完成零件預(yù)定的全部加工過程和部分檢驗過程,因而對于工件的翻轉(zhuǎn)也要求能夠嚴(yán)格適應(yīng)這種節(jié)奏。
生產(chǎn)中應(yīng)用翻轉(zhuǎn)裝置可以提高生產(chǎn)的白動化水平和勞動生產(chǎn)率,可以減輕勞動強(qiáng)度,保證產(chǎn)品質(zhì)量,實現(xiàn)安全生產(chǎn),尤其在高溫、高壓、低溫、低壓、粉塵、易爆、有毒氣體和放射性等劣的壞境中,它代替人進(jìn)行正常的工作,意義更為重大。因此,翻轉(zhuǎn)裝置在工業(yè)生產(chǎn)中廣泛應(yīng)用。
4課題研究的意義
1)可以提高生產(chǎn)過程的自動化程度。應(yīng)用翻轉(zhuǎn)裝置,有利于提高生產(chǎn)的自化程度,從而可以提高勞動生產(chǎn)率,降低生產(chǎn)成本,加快實現(xiàn)工業(yè)生產(chǎn)機(jī)械化和自動化的步伐。
2)可以改善勞動條件、避免人身事故。在有些場合中,用人手直接工件翻轉(zhuǎn)是有危險或根本不可能的。而應(yīng)用翻轉(zhuǎn)裝置即可部分或全部代替人安全地完成作業(yè),大大地改善了工人的勞動條件。
3)可以減少人力,便于有節(jié)奏的生產(chǎn)。應(yīng)用翻轉(zhuǎn)裝置代替人手進(jìn)行工作,這是直接減少人力的一個側(cè)面,同時由于應(yīng)用翻轉(zhuǎn)裝置可以連續(xù)地工作,這是減少人力的另一個側(cè)面。因此,在自動化機(jī)床和綜合加工自動生產(chǎn)線上目前幾乎都設(shè)有翻轉(zhuǎn)裝置,以減少人力和更準(zhǔn)確地控制生產(chǎn)的節(jié)拍,便于有節(jié)奏地進(jìn)行生產(chǎn)。
參考文獻(xiàn):
[1] 孫學(xué)平.一種工件自動翻轉(zhuǎn)裝置的通用設(shè)計方法[J].機(jī)械工程師,2006(01):124.
[2] 林順洪,朱新才,李長江等.軋輥軸承座液壓翻轉(zhuǎn)裝置設(shè)計[J].機(jī)械工程師,2005,(7):98-99.
[3] 曹玉寶.自動化生產(chǎn)線工件翻轉(zhuǎn)裝置設(shè)計[J].機(jī)械傳動,2010(9):80-85
[4]李長江,林順洪,朱新才.大型軸承座翻轉(zhuǎn)裝置的虛擬樣機(jī)設(shè)計[J].煤礦機(jī)械,2008,(04):199-201.
[5] 劉海影. 工件180度翻轉(zhuǎn)裝置的設(shè)計[J]工業(yè)技術(shù),2013(08)
[6] 王化清.大型工件的翻轉(zhuǎn)設(shè)備的設(shè)計與應(yīng)用[J].金屬加工冷加工,2O10(1):42-45
關(guān)于課題《大型回轉(zhuǎn)支承套圈端面加工翻轉(zhuǎn)裝置設(shè)計》的文獻(xiàn)綜述
回轉(zhuǎn)支承在現(xiàn)實工業(yè)中應(yīng)用很廣泛,是兩物體之間需作相對回轉(zhuǎn)運動,又需同時承受軸向力、徑向力、傾翻力矩的機(jī)械所必需的重要傳動原件。隨著機(jī)械行業(yè)的迅速發(fā)展,回轉(zhuǎn)支承在船舶設(shè)備、工程機(jī)械、輕工機(jī)械、冶金機(jī)械、醫(yī)療機(jī)械、工業(yè)機(jī)械人、隧道掘進(jìn)機(jī)、旋轉(zhuǎn)舞臺等行業(yè)得到了廣泛的應(yīng)用。回轉(zhuǎn)支承端面套圈在機(jī)械加工過程中常常需要進(jìn)行翻轉(zhuǎn),由于工件慣性大在翻轉(zhuǎn)的過程中會產(chǎn)生較大的沖擊,因此存在很大的安全隱患,所以需要設(shè)計合理的翻轉(zhuǎn)裝置已實現(xiàn)工件的平穩(wěn)翻轉(zhuǎn)。工件在制造加工中需要經(jīng)常翻身,因此根據(jù)不同工件的結(jié)構(gòu)特點設(shè)計專用翻轉(zhuǎn)設(shè)備給操作者帶來了大的方便,在大幅度地提高生產(chǎn)效率的同時確保了安生產(chǎn)。由此可見,翻轉(zhuǎn)設(shè)備是工件批量生產(chǎn)必不可少的專用裝備。大型回轉(zhuǎn)支承又稱轉(zhuǎn)盤軸承或大型軸承,是一種能夠承受綜合載荷的大型軸承,可以同時承受較大的徑向載荷、軸向載荷和傾翻力矩,轉(zhuǎn)盤軸承廣泛用于起重機(jī)械、港口機(jī)械、船舶機(jī)具以及其他方面的大型回轉(zhuǎn)裝置上。由于大型回轉(zhuǎn)支承體積大,零件截面積小,加工精度高,工序長,易變形,因此加工的難度增大。
(1)一種工件自動翻轉(zhuǎn)裝置的通用設(shè)計方法[1]
在自動化生產(chǎn)線中, 常常會遇見一種要求工件翻轉(zhuǎn)的情況。比如在傳輸線上工件的初始狀態(tài)為臥式狀態(tài), 現(xiàn)在要求其改變?yōu)檎玖顟B(tài)。為解決這個問題, 設(shè)計了一簡單易行的翻轉(zhuǎn)裝置。其工作原理圖如圖1-1所示。
傳輸方向為垂直紙面由里向外。軸 6 裝在夾爪 5 中,通過軸承 8 裝配連接能自由轉(zhuǎn)動。初始狀態(tài)時, 平行氣爪2處于張開狀態(tài), 氣缸 3 伸出, 平行氣爪 2 收縮夾緊工件 1,氣缸 3 縮回, 抓取工件上升, 工件在重力作用下自動翻轉(zhuǎn)成立式狀態(tài)。抓取點取在工件重心前方時, 工件翻轉(zhuǎn)后上面朝后, 若抓取點取在工件重心后方時, 工件翻轉(zhuǎn)后上面朝前。平行氣爪 2 張開, 工件 1 落下并處于立式狀態(tài)。這種裝置設(shè)計時, 需要選好抓取工件時的抓取點, 以保證工件能順利翻轉(zhuǎn), 并且準(zhǔn)確計算好氣缸 3 的行程, 使工件距下底面高度為 2 mm, 以保證工件落下時不會摔倒。根據(jù)工件尺寸的大小不同, 可以選擇不同行程的平行氣爪 2和不同行程的氣缸 3 適應(yīng)不同尺寸的工件, 達(dá)到翻轉(zhuǎn)的目的。通過多條生產(chǎn)線的使用, 這種裝置運行效果良好, 用戶都很滿意。其工作原理已經(jīng)在自動化生產(chǎn)線中被廣泛地采用。
圖1-1 簡易翻轉(zhuǎn)裝置
小結(jié):本方案應(yīng)用優(yōu)化設(shè)計理論, 建立的以凸輪基本尺寸最小值為目標(biāo)函數(shù)、壓力角及接觸強(qiáng)度等性能要求為約束條件所構(gòu)成的優(yōu)化設(shè)計數(shù)學(xué)模型是可行的, 對凸輪機(jī)構(gòu)的設(shè)計有一定的應(yīng)用價值,為在傳輸線上工件的初始狀態(tài)為臥式狀態(tài), 改變成站立狀態(tài)設(shè)計了一種簡單易行的翻轉(zhuǎn)裝置。
(2) 輥軸承座液壓翻轉(zhuǎn)裝置[2]
設(shè)計如圖1-2所示,為軋輥軸承座液壓翻轉(zhuǎn)裝置總體布置圖。該裝置主要由翻轉(zhuǎn)體、支承裝置、支撐A、支撐B、行程開關(guān)、翻轉(zhuǎn)油缸等組成。該裝置采用翻轉(zhuǎn)油缸水平安放,翻轉(zhuǎn)油缸的安裝、檢修將非常方便。
圖1-2所示為立式翻轉(zhuǎn)( 軸承中心線由水平轉(zhuǎn)向垂直) 的初始位置。工作原理是:首先利用車間的起重機(jī)將從軋輥上拆下的軋輥軸承座吊放在翻轉(zhuǎn)臺上, 然后啟動軋輥軸承座翻轉(zhuǎn)裝置將軋輥的軸承座進(jìn)行90°的立式翻轉(zhuǎn)(軸承中心線由水平轉(zhuǎn)到垂直),再用起重機(jī)將翻轉(zhuǎn)完的軋輥軸承座吊放到指定位置對軸承座內(nèi)的軸承進(jìn)行檢修, 至此完成了一個工作輥/支承輥軸承座的翻轉(zhuǎn)工作。當(dāng)軸承座內(nèi)的軸承檢修完畢后對軋輥的軸承座進(jìn)行90 的臥式翻轉(zhuǎn)(軸承中心線由垂直轉(zhuǎn)向水平)時工作順序與此相反。圖1-3所示為軋輥軸承座液壓翻轉(zhuǎn)裝置液壓系統(tǒng)。系統(tǒng)由一臺恒壓變量泵供油,常態(tài)下電磁溢流閥斷電,液壓泵卸荷使電機(jī)空轉(zhuǎn)。當(dāng)電磁溢流閥得電時,液壓泵建立起壓力,電磁換向閥左邊得電,壓力油進(jìn)入有桿腔,在壓力油作用下,液壓缸活塞退回從而實現(xiàn)將軋輥的軸承座進(jìn)行90°的立式翻轉(zhuǎn)。同理,當(dāng)電磁溢流閥得電時,液壓缸活塞推出,實現(xiàn)將軋輥的軸承座進(jìn)行90°的臥式翻轉(zhuǎn)。兩只翻轉(zhuǎn)油缸采用剛性連接保持同步。為了使工作平穩(wěn),采用調(diào)速閥進(jìn)行速度調(diào)節(jié)。為了減小由于軸承座和翻轉(zhuǎn)體的重心位置變化引起負(fù)值負(fù)載而產(chǎn)生慣性沖擊, 采用了平衡閥。
小結(jié):本軋輥軸承座液壓翻轉(zhuǎn)裝置能平穩(wěn)、高效地對軋機(jī)的軋輥軸承座進(jìn)行 90°的立式翻轉(zhuǎn)和90°的臥式翻轉(zhuǎn)。軋輥軸承座液壓翻轉(zhuǎn)裝置對工作輥、支承輥軸承座進(jìn)行的90°翻轉(zhuǎn),能拆卸和安裝軸承座內(nèi)的軸承。該裝置具有自動化程度高、生產(chǎn)效率高運行平穩(wěn)等特點。
圖1-2 軋輥軸承座液壓翻轉(zhuǎn)裝置總體布置圖
1-翻轉(zhuǎn)油缸;2-翻轉(zhuǎn)油缸支座;3-行程開關(guān);4-支承A;
5-軋輥軸承座;6-支承裝置;7-翻轉(zhuǎn)體;8-支承B;9-設(shè)備基礎(chǔ)
圖1-3軋輥軸承座液壓翻轉(zhuǎn)裝置液壓系統(tǒng)
(3)自動化生產(chǎn)線工件翻轉(zhuǎn)裝置設(shè)計[3]
柴油機(jī)缸蓋自動化生產(chǎn)線中,由于缸蓋在加工過程中要進(jìn)行多面加工,因此要求對工件進(jìn)行翻轉(zhuǎn)。其工作順序如下:執(zhí)行機(jī)構(gòu)下降一夾緊工件一執(zhí)行機(jī)構(gòu)上升一將工件翻轉(zhuǎn)180°一執(zhí)行機(jī)構(gòu)下降一松開工件一執(zhí)行機(jī)構(gòu)上升,一個循環(huán)完成,循環(huán)周期為20s。總體結(jié)構(gòu)如圖1-4所示,執(zhí)行機(jī)構(gòu)1下降到預(yù)定位置,由夾緊液壓缸(圖中未畫出)驅(qū)動夾緊工件,然后上升到一定位置,翻轉(zhuǎn)液壓缸(圖中未畫出)工作,即可將工件翻轉(zhuǎn)。
1-執(zhí)行機(jī)構(gòu);2-立柱;3-橫梁;4-升降液壓缸;
5-充液系統(tǒng);6-鎖緊螺母;7-調(diào)整螺母;8-底座
圖1-4 工件翻轉(zhuǎn)裝置總體結(jié)構(gòu)
圖1-5 執(zhí)行機(jī)構(gòu)1-4剖視圖
其液壓原理圖如圖1-6所示,工作原理在這里就不再過多敘述。
圖1-6 液壓原理圖
1-過濾器;2-雙連葉片泵;3-雙連葉片泵;4-油箱;5-溢流閥;
6-溢流閥;7-電磁換向閥;8-單向節(jié)流閥;9-升降液壓缸;10-夾緊液壓缸;
11-單向節(jié)流閥;12-電磁換向閥;13-翻轉(zhuǎn)液壓缸;14-電磁換向閥
小結(jié):該裝置具有結(jié)構(gòu)簡單、液壓傳動平穩(wěn)慣性小,以及易于控制等優(yōu)點,廣泛適用于箱體類和其他非回轉(zhuǎn)類零件的翻轉(zhuǎn)加工。
(4)大型軸承座翻轉(zhuǎn)裝置的虛擬樣機(jī)設(shè)計[4]
該裝置主要由翻轉(zhuǎn)體、支撐裝置和翻轉(zhuǎn)油缸等組成。翻轉(zhuǎn)油缸水平安放,翻轉(zhuǎn)油缸的安裝、檢修非常方便如圖1-7為軸承座液壓翻轉(zhuǎn)裝置原理圖,圖1-7所示為立式翻轉(zhuǎn)(軸承中心線由水平到垂直)的初始位置。工作原理是:先利用車間的起重機(jī)將軸承座吊放在翻轉(zhuǎn)臺上,然后啟動座翻轉(zhuǎn)裝置將軸承座進(jìn)行90°的立式翻轉(zhuǎn)(軸承中心線由水平→垂直),再用起重機(jī)將翻轉(zhuǎn)完的軸承座吊放到指定位置對軸承座內(nèi)的軸承進(jìn)行檢修,至此完成了一個軸承座的翻轉(zhuǎn)工作。當(dāng)軸承座內(nèi)的軸承檢修完畢后對軸承座進(jìn)行90°的臥式翻轉(zhuǎn)(軸承中心線由垂直→水平)時工作順序與此正好相反。
圖1-7大型軸承座翻轉(zhuǎn)裝置工作原理圖
1. 翻轉(zhuǎn)油缸支座 2.翻轉(zhuǎn)油缸 3.翻轉(zhuǎn)體 4.支撐裝置5.軸承座
圖1-8軋輥軸承座翻轉(zhuǎn)裝置的整體模型
小結(jié):該翻轉(zhuǎn)油缸水平安放,翻轉(zhuǎn)油缸的安裝、檢修非常方便,能夠拆卸、安裝軸承座內(nèi)的軸承。該裝置具有自動化程度高、生產(chǎn)效率高和運行平穩(wěn)等特點。
(5)工件180度翻轉(zhuǎn)裝置的設(shè)計[5]
該裝置傳輸方向由左向右。動力軌道裝在三個轉(zhuǎn)盤中,分別由兩只電動滾筒帶動;轉(zhuǎn)盤1、3起支承并固定動力軌道的作用,轉(zhuǎn)盤2通過電機(jī)帶動鏈輪鏈條(未畫出轉(zhuǎn)動;上下各有兩只液壓缸,在旋轉(zhuǎn)過程中起夾緊作用。初始狀態(tài)時,上下兩處液壓缸處于非工作狀態(tài);軌道1在電動滾筒帶動下圖1-9工作,工件由左向右進(jìn)入翻轉(zhuǎn)裝置,當(dāng)工件運行到正確位置,軌道側(cè)面光電開關(guān)工作,電動滾筒停止工作。
這時頂升液壓缸頂起工件約為5mm,然后夾緊液壓缸夾緊工件;接著電機(jī)工作,帶動鏈輪鏈條旋轉(zhuǎn)過180度;由兩側(cè)接近開關(guān)控制旋轉(zhuǎn)的角度.翻轉(zhuǎn)結(jié)束后,上下兩液壓缸縮回,由工人對工件進(jìn)行檢驗,檢驗完畢,軌道 2工作,工件由軌道2輸送出去;電機(jī)帶動鏈輪鏈條反向轉(zhuǎn)動工件180度,再進(jìn)行對下一個工件的操作。
工件翻轉(zhuǎn)采用鏈輪鏈條結(jié)構(gòu)來實現(xiàn)如圖1-10,鏈輪鏈條傳動是一種工業(yè)上應(yīng)用非常廣泛的機(jī)械結(jié)構(gòu),其中鏈條的兩端與中間轉(zhuǎn)盤的相連,電機(jī)帶動鏈輪旋轉(zhuǎn)(未畫出),中間轉(zhuǎn)盤在鏈條的牽引下即可進(jìn)行轉(zhuǎn)動,從而帶動兩側(cè)轉(zhuǎn)盤轉(zhuǎn)動,實現(xiàn)對工件的翻轉(zhuǎn)。
圖1-9翻轉(zhuǎn)裝置圖
圖1-10鏈輪鏈條結(jié)構(gòu)圖
液壓系統(tǒng)原理圖如圖1-11所示。三位四通電磁換向閥分別控制升降缸3夾緊缸的運動方向。單向節(jié)流閥用于回油節(jié)流調(diào)速。執(zhí)行機(jī)構(gòu)由驅(qū)動升降的液壓缸3驅(qū)動夾緊松開的液壓缸組成。單向節(jié)流閥還用于平衡位置升降缸及其工作機(jī)構(gòu)的自重以防下滑。液壓及控制系統(tǒng)的工作原理見圖1-11,在這里就不過多敘述。
圖1-11液壓控制圖
小結(jié):設(shè)計的該工件翻轉(zhuǎn)裝置經(jīng)在客戶柴油機(jī)缸體自動化生產(chǎn)線應(yīng)用,達(dá)到了預(yù)期的設(shè)計要求。利用鏈輪鏈條傳動結(jié)合液壓傳動系統(tǒng),并與可編程控制器和計算機(jī)控制相結(jié)合,很好地實現(xiàn)了工件的翻轉(zhuǎn)。該裝置具有結(jié)構(gòu)簡單3液壓傳動平穩(wěn)慣性小,運行平穩(wěn),效果良好,以及易于控制等優(yōu)點,廣泛適用于箱體類和其他非回轉(zhuǎn)類零件的翻轉(zhuǎn)加工,在自動化生產(chǎn)中具有廣闊的應(yīng)用前景。
由于國內(nèi)外對翻轉(zhuǎn)裝置的研究有許多,這里只是介紹幾種常用方法,其它翻轉(zhuǎn)裝置機(jī)構(gòu)型式在這不過多敘述。
參考文獻(xiàn):
[1] 孫學(xué)平.一種工件自動翻轉(zhuǎn)裝置的通用設(shè)計方法[J].機(jī)械工程師,2006(01):124.
[2] 林順洪,朱新才,李長江等.軋輥軸承座液壓翻轉(zhuǎn)裝置設(shè)計[J].機(jī)械工程師,2005,(7):98-99.
[3] 曹玉寶.自動化生產(chǎn)線工件翻轉(zhuǎn)裝置設(shè)計[J].機(jī)械傳動,2010(9):80-85
[4]李長江,林順洪,朱新才.大型軸承座翻轉(zhuǎn)裝置的虛擬樣機(jī)設(shè)計[J].煤礦機(jī)械,2008,(04):199-201.
[5] 劉海影. 工件180度翻轉(zhuǎn)裝置的設(shè)計[J]工業(yè)技術(shù),2013(08)
[6] 王化清.大型工件的翻轉(zhuǎn)設(shè)備的設(shè)計與應(yīng)用[J].金屬加工冷加工,2O10(1):42-45
Acta Montanistica Slovaca Ronk 13 (2008), slo 1, 152-157 Hydraulic Press with LS System for Modelling of Plastic Working Operations Janusz Pluta1 Hydraulick lis so systmom LS pre modelovaniu procesov plastickch deformci At first, the paper describes destination of the presented hydraulic press. Next, the substance of load sensing (LS) systems operation was introduced, and electro-hydraulic system of this type, installed in laboratory hydraulic press, was described. The control and measurement circuit of the device was also described, and exemplary test results obtained during plastic working operations on soft non-ferrous alloys were presented. Key words: electro-hydraulic system, hydraulic press, load sensing system, plastic working operation Introduction Press with hydrostatic drive belongs to group of units, which are widely used in plastic working of materials. Presented in article hydraulic press makes an example of modern solution application in electro-hydraulic technology domain for getting of specified functional and operational unit properties. Such a press is intended for wide range research leading, especially plastic working operations on non-ferrous alloys physical modelling in one of laboratories at AGH-UST in Krakow. Operations of upsetting and compressing, forging modelling, hot and cold extrusion are conducted on press. Experiments are carried out mainly on soft metals such as: aluminium, tin, lead and their alloys. Interesting powder metallic materials extrusion process is also in research project. For sake of nature, number and range of conducted investigations, simple servicing and possibility of manual or automatic cycle work is required from the press. Simultaneously assurance of following job parameters and fulfilment of basic requirements is needed: overcame loads range: 0 3000 kN, plunger velocity range 5 200 mm/min, possibility of stepless adjustment and plunger motion velocity stabilization regardless of applied loads, possibility of long-lasting work with high experimentation frequency, energy losses minimization in hydraulic system, possibility of measurement and data logging of selected physical values. Analyzing different kinds of control used in hydrostatic systems, were made decision about constructing a press with load sensing” type electro-hydraulic control system. Construction, functioning and properties of load sensing” systems is described in next chapter. The substance of the hydraulic LS system operation As an aim of loosed power minimization in hydraulic systems or obtaining precision control of hydraulic receiver velocity more frequently are used systems in which supply pressure generated by hydraulic pump is adapting to current receiver load in the way of holding constant pressure drop on restrictor controlling receiver working. In English literature these systems are known under the name of load sensing” systems (Ebertshuser, 1989; Pluta, 2002), in German lastdruckkompensation” or lastkompensation” 1. Basing on definitions written in (Ebertshuser, 1989; Osiecki, 1998; Stryczek, 1995; Makowski, 2001), in further considerations by Load Sensing system (in abbreviation, LS system), in most general sense, will be understand as hydraulic system in which there is a feedback from load and which automatically adapting instantaneous circulation (or circulations) working parameters to receiver (or receivers) requirements or setting work conditions. Construction and properties of individual LS systems varietys depends among other things on: kind of hydraulic circulation (open, closed, semi-closed), kind of hydraulic pump (fixed or variable displacement pump) and kind of used throttle valve construction. One 1 dr. In. Janusz Pluta. Department of Process Control, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Krakow, Poland, plutianagh.edu.pl (Recenzovan a revidovan verzia dodan 28. 11. 2007) 152 Acta Montanistica Slovaca Ronk 13 (2008), slo 1, 152-157 of the main aim of construction and using the LS systems is desire for elimination or at least minimization of energy losses. For achievement of this aim three kinds of controllers are used in LS systems: 2: type I controller, working according to p = const principle, which eliminate power losses due to excessive output flow of hydraulic pump, type II controller, working according to p = const principle, which eliminate power losses due to excessive output flow of hydraulic pump and minimizing losses due to excessive forcing pressure of hydraulic pump, type III controller, working according pQ = const principle, which besides realized by type II controller tasks, fulfil role of power consumed by hydraulic pump limiter. Type I controller (Fig. 1) consists of: variable displacement pump 1, cylinder with spring return 2 controlling output flow of hydraulic pump, pressure compensatory valve 3 and safety-valve 4. Controller working consists in that if output flow of hydraulic pump is bigger than receiver requirements and as a result of that increasing of pressure in working line follow over setting up value on valve 3, so after that this valve is immediately open connecting working line with cylinder 2, which decrease output flow of hydraulic pump to level of receiver 5 demanding. Type II controller (Fig. 2) consists of variable displacement pump 1 controlled by cylinder 2, differential valve 3 and overflow valve 4. Its working principle is common to type I controller. Those controller holds constant pressure drop p on throttle 5, came 5% of maximum pressure value in system. However pressure in working line of hydraulic pump is variable in this system and is depending on receiver load. Fig. 1. Hydraulic scheme of LS system with type I controller. Fig. 2. Hydraulic scheme of LS system with type II controller. Type III controller limits mechanical energy taken from driving motor by hydraulic pump adapting output flow of pump to pressure in working line according to hyperbolic characteristic. Moreover type III controller includes parts consisting to type II controller. Two fundamental possibilities of LS system idea realization are known, which allow for getting completely distinctness drive properties. They result from that, is hydraulic drive supplied from source of constant flow rate or from variable displacement pump equipped with pressure controller (Osiecki, 1998; 153 Janusz Pluta: Hydraulic Press with LS System for Modelling of Plastic Working Operations Stryczek, 1995). Throttle valves (mostly special construction throttling control valves) are essence of those systems. In connection with two and three way differential valves they form systems, which realize active throttling principle. It consists in that differential valves (named sometimes as compensatory valves (Ebertshuser, 1989; Osiecki, 1998; Stryczek, 1995) which automatically adapting flow rate of liquid flux reaching hydraulic receiver in dependence of pressure drop value setting up on throttle valve. Setting up of those drop can be done manually or by use of electro-hydraulic control. Possibility of precise hydraulic receiver velocity control independently from load is the most essential advantage of LS systems with fixed displacement pump (Fig. 3). From energetic point of view those systems didnt give any advantages in comparison with conventional throttling control systems supplied by fixed displacement pump. Biggest decrease of energy losses can be obtained by connecting throttling control with volumetric control i.e. variable displacement pump equipped with pressure regulator (Fig. 2). Throttling valve 6 works with differential valve reacting on pressure difference p together. In this manner structural volumetric loss Nv is eliminated but structural hydrodynamic loss Nh connected to flow resistance p through throttling control valve is appearing. System of such type was a starting point for studying a press with electro-hydraulic load sensing” system. The electro-hydraulic LS system of the press Characterized hydraulic press includes mechanical and hydraulic parts, measurement control system and electric supply system. Mechanical part consist of four vertical columns connecting two horizontal traverse: lower and upper (Fig. 4). Hydraulic plunger cylinder collar which is press driving part is mounted on lower traverse. Those cylinder with connected to them hydraulic supplying and control unit makes hydraulic part of the press. For constructing of pumping engine hydraulic and electro-hydraulic control devices which cooperates with suitable sets of measurement and control system were used. Most of controlling tasks were assigned to electrical part of unit. Working substance of studied hydraulic system of the press and collaborating measurement and control system is the same as hydraulic LS system with type II controller presented at Figure 3. But for the sake of kind and working of used elements more precise name for constructed system will be electro-hydraulic load sensing system. In place of manually controlled throttling valve 6 (Fig. 2), two-way electro-hydraulic proportional valve 6 (Fig. 5.) is used. Fig. 3. LS system scheme with fixed displacement pump Fig. 3. LS system scheme with fixed displacement pump. Pumping unit with hydraulic pressure controller is replaced with pumping unit with fixed displacement pump 1 drive by asynchronous motor 2 working with frequency changer. On inlet and outlet of proportional valve 2 pressure transducers 3.1, 3.2 which measure of pressure difference on this valve made possible were mounted. In result of changing the load acting on plunger of hydraulic cylinder 5 pressure p2 is changing in outlet of valve 6. For holding constant pressure drop p = p1 p2 on this valve what is a condition of plunger constant velocity preservation with a change of pressure p2 adequately pressure p1 must change. Inother words change of pressure p1 must go after changes of pressure p2. This task is realized by pumping unit which during changes of output flow affect on pressure p1 change. Output flow change is gained by pump shaft rotational speed change. Its possible due to frequency changer working with asynchronous motor which drives the pump. Thanks to that pumping unit properties can be obtained as in hydraulic system with type II controller (Fig. 2). For assurance of pump correct work with different rotational speed of rotor besides construction type, place and manner of installing is very important factor. Especially the thing is that suction of hydraulic fluid have good conditions. For most pumps producers gives in technical data minimal value of rotational speed in limits of 500 to 900 rpm with suitable pressure in suction line. It means that only above this speed we can change pump output flow up to acceptable velocity for example 3000 rpm. However, if very good pressure and flow conditions in suction line will be assured, rotational speed for some kinds of pumps can be reduced significantly with obtaining correct work. Selection of pump driving motor is important too. In significant range of rotational speeds starting below half of motors nominal value, asynchronous motor with additional (independent) cooling can be used. Parameters of used frequency changer as especially nominal power are important as well. For assurance of correct measure and control system work, frequency changer should be equipped with filter against sensor work interference. 154 Acta Montanistica Slovaca Ronk 13 (2008), slo 1, 152-157 During work of described press three kinds of work state are appear: motion of plunger with setting velocity which is a working motion, during which overcoming a resistance to motion connected mainly with plastic working process modelling, standstill of plunger designed for making auxiliary actions, lowering of plunger under the die block weight which is placed on plunger. Structure of electro-hydraulic LS system appear only during working motion. During lowering of plunger with die block valve 6 is closed, and directional control valve 7 is in open position. Signal from those directional control valve cause in opening valve 8, through which hydraulic liquid leaves cylinder 5 forced by plunger and die block outside into the tank. During this phase of work pumping unit works with minimum output flow essential for getting valve 8 opening pressure. During standstill pumping unit output flow is take down to zero but asynchronous motor 2 with frequency changer is in stand-by mode. b )a ) Fig. 4. The press: a) front view, b) rear view. During work of described press three kinds of work state are appear: motion of plunger with setting velocity which is a working motion, during which overcoming a resistance to motion connected mainly with plastic working process modelling, standstill of plunger designed for making auxiliary actions, lowering of plunger under the die block weight which is placed on plunger. Structure of electro-hydraulic LS system appear only during working motion. During lowering of plunger with die block valve 6 is closed, and directional control valve 7 is in open position. Signal from those directional control valve cause in opening valve 8, through which hydraulic liquid leaves cylinder 5 forced by plunger and die block outside into the tank. During this phase of work pumping unit works with minimum output flow essential for getting valve 8 opening pressure. During standstill pumping unit output flow is take down to zero but asynchronous motor 2 with frequency changer is in stand-by mode. 155 Janusz Pluta: Hydraulic Press with LS System for Modelling of Plastic Working Operations Fig. 5. Scheme of press with electro-hydraulic LS system: 1 pump, 2 electrical motor, 3.1 and 3.2 pressure transducers, 4 relief valve, 5 hydraulic cylinder, 6 2/2 proportional flow control valve, 7 3/2 directional control valve, 8 controlled check valve, 9 displacement transducer, 10 force sensor. The control and measurement system This system is designed for press working control according to programmed algorithms and made measurements and data logging of selected physical quantities. With excluding of sensors system was placed in control box with electrical elements and components supplying system. The following main systems were used: programmable logic controller equipped with analogue input and output modules, programmable operating panel, frequency converter of vector control. In press sensors and measuring converters were mounted from which part were used in electro-hydraulic control of LS system, other were used for physical quantities measurement, what make possible determining of made plastic working operations characteristics. There are (Fig. 5): piezoelectric pressure transducers 3.1 and 3.2, contactless magnetostrictal position and linear velocity transducer 9 of plunger (die block), induction proportional valve 6 slide position sensor 6.1, compressing force strain gauge sensor 10 working with suitable transducer. The controller software was realized by using Mitsubishi MELSEC MEDOC programme. The software, recorded as a ladder diagram is composed of the main programme and the subroutines. In the main programme the following functional blocks were distinguished: work parameter fixing for particular elements of hydraulic and control and measuring system, as initial and limit values and filtration coefficients of measured signals, parameter fixing which initialize the work of measuring and control modulus, read-out of the measured values together with their filtration, collaboration with operation panel (option selection from MAIN MENU or from the control algorithm of functional keys), force measuring system calibration, tarring of force and distance measuring system, data transmission to PC computer, control algorithm selection. Particular control algorithms were recorded as subroutines realizing following research procedures: manual control, upsetting, compressing, forging, extrusion. Operating panel was programmed by using the object MAC Programmer + Packet. Particular screens projector aspect was designed in separate programme blocks, whereas their mutual connections between blocks were realized by using jump function produced on the screens and by functional keys. 156 Acta Montanistica Slovaca Ronk 13 (2008), slo 1, 152-157 Sample characteristics First experiments on the presented device were conducted with the test pieces made of lead. Sample characteristics were determined by press control and measuring system during test of lead extrusion are presented at Fig. 5. Upper characteristic shows diagram of extrusion force, lower diagram of plunger (die block) displacement. From the test results it can be concluded, that in case of plastic strain of the soft material increase of pressing force is slight at first, then for some time it is very intensive until the maximum value is reached, and after that continuous and rather slow decrease of forces value occurs. During this experiment pressing force of the press did not reach 20 % of its nominal value. 70 80 90 100 110 120 130 1400 200400600time s force kN70 80 90 100 110 120 130 140150 200250300time s displacement mm Fig. 6. Lead extrusion diagrams for plunger velocity 105 mm/min Conclusion The presented device was set up in Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Krakow Poland. Connecting of modern hydraulic technology and electric drives technique with microprocessor technique and modern measurement technique allow constructing of electro-hydraulic press system with properties of LS system. Hydraulic system were constructed from typical elements with high reliability makes simple and easy construction for maintenance. Used in hydraulic press LS system turn out to be useful in practice. A few year reliable work confirm their usefulness and expected functional and exploitation properties. References Ebertshuser, H.: Fluidtechnik von A bis Z. Der Hydraulik Trainer, Band 5. Mannesmann Rexroth GmbH 1989. ISBN 378300243-5. Osiecki, A.: Hydrostatyczny Napd Maszyn. Wydawnictwa Naukowo-Techniczne, Warszawa 1998. ISBN 832042296-5. Pluta, J., Podsiado, A., Sapiski B.: Energooszczdne ukady hydrauliczne. II Midzynarodowa Konferencja Techniki Urabiania 2002. Krakw Krynica, wrzesie 2002, pp. 569 581. ISBN 8391574253. Stryczek, S.: Napd hydrostatyczny, tom II. Wydawnictwa Naukowo-Techniczne, Warszawa 1995. ISBN 8320418283. Makowski, A.: Wykorzystanie odmiany sterowania load sensing w hydraulicznym ukadzie dawieniowym. Hydraulika i Pneumatyka. Dwumiesicznik naukowo-techniczny nr 4/2001, pp. 26-27. Wrocaw 2001. ISSN 15053954 157
收藏