高考數(shù)學一輪復習 第七章 第6課時 直接證明與間接證明課件 理.ppt
《高考數(shù)學一輪復習 第七章 第6課時 直接證明與間接證明課件 理.ppt》由會員分享,可在線閱讀,更多相關《高考數(shù)學一輪復習 第七章 第6課時 直接證明與間接證明課件 理.ppt(61頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第七章不等式及推理與證明 1 了解直接證明的兩種基本方法 分析法和綜合法 了解分析法和綜合法的思考過程 特點 2 了解間接證明的一種基本方法 反證法 了解反證法的思考過程 特點 請注意不等式的證明是高考的一個重要內(nèi)容 也是一類難點 一方面是證明的方法靈活多樣 要依據(jù)題設 題目的特點和內(nèi)在聯(lián)系 選擇適當?shù)淖C明方法 并掌握相應的步驟 技巧和語言特點 另一方面是知識的交匯與解題能力的綜合 傳統(tǒng)的純不等式的證明問題很少在高考中出現(xiàn) 但是與三角函數(shù) 數(shù)列 導數(shù)等知識的綜合命題卻顯得非?;钴S 對考生綜合運用知識和邏輯推理能力有較高的要求 1 綜合法一般地 利用 經(jīng)過一系列的 最后推導出所要證明的結(jié)論成立 這種證明方法叫做綜合法 用P表示已知條件 已有的定義 公理 定理等 Q表示所要證明的結(jié)論 則綜合法可用框圖表示為 已知條件和某些數(shù)學定義 公理 定理等 推理論證 2 分析法一般地 從要出發(fā) 逐步尋求使它成立的 直至最后 把要證明的結(jié)論歸結(jié)為判定一個明顯成立的條件 已知條件 定理 定義 公理等 為止 這種證明的方法叫做分析法 用Q表示要證明的結(jié)論 則分析法可用框圖表示為 證明的結(jié)論 充分條件 3 反證法一般地 假設 經(jīng)過正確的推理 最后得出 因此說明 從而證明了原命題成立 這樣的證明方法叫做反證法 原命題不成立 矛盾 假設錯誤 1 用分析法證明 欲使 A B 只需 C D 這里 是 的 A 充分不必要條件B 必要不充分條件C 充要條件D 既不充分也不必要條件答案B解析分析法證明的本質(zhì)是證明結(jié)論的充分條件成立 即 所以 是 的必要條件 2 課本改編題 用反證法證明命題 a b N ab可被5整除 那么a b中至少有一個能被5整除 時 假設的內(nèi)容應為 答案a b都不能被5整除 3 設p 2x4 1 q 2x3 x2 x R 則p與q的大小關系是 答案p q解析 p q 2x4 2x3 x2 1 2x3 x 1 x 1 x 1 x 1 2x3 x 1 x 1 2 2x2 2x 1 0 p q 4 設a b是兩個實數(shù) 給出下列條件 a b 2 a2 b2 2 其中能推出 a b中至少有一個大于1 的條件是 填上序號 答案 解析取a 2 b 1 則a2 b2 2 從而 推不出 能夠推出 即若a b 2 則a b中至少有一個大于1 用反證法證明如下 假設a 1 且b 1 則a b 2與a b 2矛盾 因此假設不成立 所以a b中至少有一個大于1 題型一綜合法 思路 1 利用導數(shù)的幾何意義求解參數(shù)的值 2 利用分類討論的思想轉(zhuǎn)化求解 探究1綜合法是一種由因索果的證明方法 其邏輯依據(jù)也是三段論式的演繹推理方法 因此要保證前提條件正確 推理合乎規(guī)律 這樣才能保證結(jié)論的正確性 綜合法是直接證明中最常用的表述方法 思考題1 答案 1 a 1 b 1 2 略 題型二分析法 思路 當所給的條件簡單 所證的結(jié)論復雜的 一般采用分析法 答案 略 探究2分析法是數(shù)學中常用到的一種直接證明方法 就證明程序來講 它是一種從未知到已知 從結(jié)論到題設 的邏輯推理方法 具體地說 即先假設所要證明的結(jié)論是正確的 由此逐步推出保證此結(jié)論成立的充分條件 而當這些判斷恰恰都是已證的命題或是要證命題的已知條件時則所證命題得證 思考題2 答案 略 例3 2013 陜西理 設 an 是公比為q的等比數(shù)列 1 推導 an 的前n項和公式 2 設q 1 證明數(shù)列 an 1 不是等比數(shù)列 解析 1 設 an 的前n項和為Sn 當q 1時 Sn a1 a1 a1 na1 當q 1時 Sn a1 a1q a1q2 a1qn 1 qSn a1q a1q2 a1qn 題型三反證法 答案 略 探究3 1 當一個命題的結(jié)論是以 至多 至少 唯一 或以否定形式出現(xiàn)時 宜用反證法求證 反證法關鍵是在正確的推理下得出矛盾 矛盾可以是 與已知條件矛盾 與假設矛盾 與定義 公理 定理矛盾 與事實矛盾等方面 反證法常常是解決某些 疑難 問題的有力工具 是數(shù)學證明中的一件有力武器 2 利用反證法證明問題時 要注意與之矛盾的定理不能是用本題的結(jié)論證明的定理 否則 將出現(xiàn)循環(huán)論證的錯誤 1 用反證法證明命題 已知a b為實數(shù) 則方程x2 ax b 0至少有一個實根 時 要做的假設是 A 方程x2 ax b 0沒有實根B 方程x2 ax b 0至多有一個實根C 方程x2 ax b 0至多有兩個實根D 方程x2 ax b 0恰好有兩個實根 答案 A 思考題3 2 實數(shù)a b c d滿足a b c d 1 ac bd 1 求證 a b c d中至少有一個為負數(shù) 證明 假設a b c d都是非負數(shù) 則由a b c d 1 得1 a b c d ac bd ad bc ac bd 即ac bd 1 這與ac bd 1矛盾 故假設不成立 即a b c d中至少有一個為負數(shù) 答案 略 1 綜合法與分析法的關系 分析法與綜合法相輔相成 對較復雜的問題 常常先從結(jié)論進行分析 尋求結(jié)論與條件的關系 找到解題思路 再運用綜合法證明 或兩種方法交叉使用 2 反證法證明的關鍵 準確反設 從否定的結(jié)論正確推理 得出矛盾 1 分析法是從要證明的結(jié)論出發(fā) 逐步尋找使結(jié)論成立的 A 充分條件B 必要條件C 充要條件D 等價條件答案A 2 若a 0 b 0 且a b 4 則下列不等式中恒成立的是 答案D 3 用反證法證明某命題時 對結(jié)論 自然數(shù)a b c中恰有一個偶數(shù) 正確的反設為 A a b c中至少有兩個偶數(shù)B a b c中至少有兩個偶數(shù)或都是奇數(shù)C a b c都是奇數(shù)D a b c都是偶數(shù)答案B 答案略證明 a2 b2 2ab b2 c2 2bc a2 c2 2ac 又 a b c為互不相等的非負數(shù) 上面三個式子中都不能取 a2 b2 c2 ab bc ac 用換元法與放縮法證明不等式一 換元法證不等式例1已知a b R a2 b2 4 求證 3a2 8ab 3b2 20 思路 本題主要考查證明不等式的常用方法 根據(jù)條件a2 b2 4的特征 可運用換元法進行證明 解析 a b R a2 b2 4 可設a rcos b rsin R 其中0 r 2 3a2 8ab 3b2 r2 3cos2 4sin2 5r2 cos 2 5r2 20 原不等式成立 講評 容易出現(xiàn)令a 2cos b 2sin 0 2 這樣錯誤的換元法 造成失誤 探究1有些不等式直接證明較為困難 但通過換元的思想方法可使問題便于研究 常見的換元是三角換元 用三角代換把問題轉(zhuǎn)化為三角問題 利用三角函數(shù)的性質(zhì)就可解決 根據(jù)實際情況 實施的代換方法有 1 設x y 1 x y 0 則x2 y2 xy的最小值為 思考題1 答案 B 答案 B- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高考數(shù)學一輪復習 第七章 第6課時 直接證明與間接證明課件 高考 數(shù)學 一輪 復習 第七 課時 直接 證明 間接 課件
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-5625147.html