高中數(shù)學(xué) 121排列與排列數(shù)公式課件 蘇教版選修23

上傳人:沈*** 文檔編號:70686488 上傳時間:2022-04-06 格式:PPT 頁數(shù):24 大?。?75.01KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 121排列與排列數(shù)公式課件 蘇教版選修23_第1頁
第1頁 / 共24頁
高中數(shù)學(xué) 121排列與排列數(shù)公式課件 蘇教版選修23_第2頁
第2頁 / 共24頁
高中數(shù)學(xué) 121排列與排列數(shù)公式課件 蘇教版選修23_第3頁
第3頁 / 共24頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 121排列與排列數(shù)公式課件 蘇教版選修23》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 121排列與排列數(shù)公式課件 蘇教版選修23(24頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、1.2排列第1課時排列與排列數(shù)公式【課標(biāo)要求】1理解排列的概念和排列數(shù),會運用排列數(shù)公式化簡、證明2能運用排列解決一些簡單問題【核心掃描】1排列的定義(重點、難點)2應(yīng)用排列數(shù)公式解決簡單的實際應(yīng)用題(難點)一定的順序排成一列 所有排列的個數(shù)n(n1)(n2)(nm1) 1 試一試排列與排列數(shù)有何區(qū)別?提示“一個排列”是指從n個不同的元素中任取m(mn)個元素,按照一定的順序排成一列,不是數(shù);“排列數(shù)”是指從n個不同元素中取出m(mn)個元素的所有排列的個數(shù),是一個數(shù)所以符號A只表示排列數(shù),而不表示具體的排列想一想如何判斷一個問題是排列問題?提示首先要保證元素?zé)o重復(fù)性,即從n個不同元素中取出m

2、(mn)個不同的元素,否則不是排列問題其次要保證元素的有序性,即安排這m個元素時是否有順序要求,有序的是排列,無序的不是排列名師點睛1正確理解排列的定義(1)排列定義包括兩個基本內(nèi)容:一是“從n個不同元素中取出m(mn)個不同的元素”,要求取出的元素不能重復(fù),二是“按照一定順序排列”(2)定義中“一定順序”就是說與位置有關(guān),在實際問題中,要由具體問題的性質(zhì)和條件決定這一點要特別注意,這也是與后面要學(xué)習(xí)的組合的根本區(qū)別(3)對于兩個排列,只有各元素完全相同,并且排列順序也完全相同時,才是相同排列 題型一概念辨析【例1】 從1,2,3,4這4個數(shù)字中,(1)每次取出3個不同的數(shù),有幾種取法?寫出所

3、有的取法是否是排列問題?(2)每次取出3個不同的數(shù)排成一個三位數(shù),共可得到多少個不同的三位數(shù)?寫出所有的三位數(shù)是否是排列問題?思路探索 由排列的定義判斷問題是否與順序有關(guān),屬于概念辨析解(1)從1,2,3,4這4個數(shù)字中取出3個不同的數(shù),有(1,2,3);(1,2,4);(1,3,4);(2,3,4)共4種取法與順序無關(guān),不是排列問題(2)畫出下列樹形圖由上面的樹形圖知所有的三位數(shù)為:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432,共24個三位數(shù)所得三

4、位數(shù)與順序有關(guān),是排列問題規(guī)律方法(1)理解判斷一個問題是不是排列問題,關(guān)鍵看是否與元素的順序有關(guān)若與順序有關(guān),就是排列問題,與順序無關(guān),就不是排列問題,必要時可以變換元素的順序比較是否有變化(2)枚舉所有排列時注意“樹形圖法”“列表法”等的應(yīng)用【變式1】 下列五種說法中:從1,2,3,5中任取兩個不同的數(shù)相減(除)可得多少種不同的結(jié)果?從1,2,3,5中任取兩個不同的數(shù)相乘(加)可得多少種不同的結(jié)果?有12個車站,共需準(zhǔn)備多少種車票?從學(xué)號1到10的十名同學(xué)中任抽兩名同學(xué)去學(xué)校開座談會,有多少種選法?平面上有5個點,其中任意三點不共線,這5點最多可確定多少條直線?其中是排列問題的為_解析由除

5、法及減法的定義知,結(jié)果都與兩數(shù)相減或相除的順序有關(guān),故是排列問題,而兩數(shù)相加或相乘的結(jié)果與順序無關(guān),故不是排列問題;車票與始點端和終點站有關(guān),是排列問題;中選取的兩名同學(xué)無順序之分,故不是排列問題;兩點確定一條直線與兩點順序無關(guān),故不是排列問題答案規(guī)律方法(1)排列數(shù)公式的乘積的形式適用于計算和當(dāng)m較小時的含排列數(shù)的方程和不等式等問題(2)排列數(shù)公式的階乘的形式主要用于與排列數(shù)有關(guān)的證明、解方程和不等式等問題,具體應(yīng)用時注意提取公因式,可以簡化計算題型三排列應(yīng)用題【例3】 (14分)(1)從5本不同的書中選出3本送給3名同學(xué),每人各1本,共有多少種不同的送法?(2)從5種不同的書中買3本送給3

6、名同學(xué),每人各1本,共有多少種不同的送法? 本題考查使用排列數(shù)公式的條件及分步計數(shù)原理,應(yīng)用排列數(shù)公式求排列數(shù)解題流程【題后反思】 屬于求排列數(shù)問題,才能用排列數(shù)公式求解,對于(2)中,由于不同的人得到的書可能相同,不符合使用排列數(shù)公式的條件,只能用分步計數(shù)原理計算【變式3】 (1)從1,2,3,4四個數(shù)字中任取兩個數(shù)字組成兩位數(shù),共有多少個不同的兩位數(shù)?(2)寫出從4個元素a,b,c,d中任取3個元素的所有排列解(1)由題意作樹形圖,如圖故所有兩位數(shù)為12,13,14,21,23,24,31,32,34,41,42,43,共有12個(2)由題意作樹形圖,如圖故所有的排列為:abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb,共有24個誤區(qū)警示排列概念理解不清致誤【示例】 10個人走進只有6把不同椅子的屋子,若每把椅子必須且只能坐一人,共有多少種不同的坐法?錯解 10個人坐6把不同的椅子,相當(dāng)于從含10個元素的集合到含6個元素的集合的映射,故有610種不同的坐法 沒弄清題意,題中要求每把椅子必須并且只能坐一人,是從10個人中取出6個人的一個排列問題在用排列數(shù)公式求解時需先對問題是否是排列問題做出判斷

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!