2019-2020年高中數(shù)學 排列與組合 版塊四 排列數(shù)組合數(shù)的計算與證明完整講義(學生版).doc
《2019-2020年高中數(shù)學 排列與組合 版塊四 排列數(shù)組合數(shù)的計算與證明完整講義(學生版).doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 排列與組合 版塊四 排列數(shù)組合數(shù)的計算與證明完整講義(學生版).doc(7頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高中數(shù)學 排列與組合 版塊四 排列數(shù)組合數(shù)的計算與證明完整講義(學生版) 知識內容 1.基本計數(shù)原理 ⑴加法原理 分類計數(shù)原理:做一件事,完成它有類辦法,在第一類辦法中有種不同的方法,在第二類辦法中有種方法,……,在第類辦法中有種不同的方法.那么完成這件事共有種不同的方法.又稱加法原理. ⑵乘法原理 分步計數(shù)原理:做一件事,完成它需要分成個子步驟,做第一個步驟有種不同的方法,做第二個步驟有種不同方法,……,做第個步驟有種不同的方法.那么完成這件事共有種不同的方法.又稱乘法原理. ⑶加法原理與乘法原理的綜合運用 如果完成一件事的各種方法是相互獨立的,那么計算完成這件事的方法數(shù)時,使用分類計數(shù)原理.如果完成一件事的各個步驟是相互聯(lián)系的,即各個步驟都必須完成,這件事才告完成,那么計算完成這件事的方法數(shù)時,使用分步計數(shù)原理. 分類計數(shù)原理、分步計數(shù)原理是推導排列數(shù)、組合數(shù)公式的理論基礎,也是求解排列、組合問題的基本思想方法,這兩個原理十分重要必須認真學好,并正確地靈活加以應用. 2. 排列與組合 ⑴排列:一般地,從個不同的元素中任取個元素,按照一定的順序排成一列,叫做從個不同元素中取出個元素的一個排列.(其中被取的對象叫做元素) 排列數(shù):從個不同的元素中取出個元素的所有排列的個數(shù),叫做從個不同元素中取出個元素的排列數(shù),用符號表示. 排列數(shù)公式:,,并且. 全排列:一般地,個不同元素全部取出的一個排列,叫做個不同元素的一個全排列. 的階乘:正整數(shù)由到的連乘積,叫作的階乘,用表示.規(guī)定:. ⑵組合:一般地,從個不同元素中,任意取出個元素并成一組,叫做從個元素中任取個元素的一個組合. 組合數(shù):從個不同元素中,任意取出個元素的所有組合的個數(shù),叫做從個不同元素中,任意取出個元素的組合數(shù),用符號表示. 組合數(shù)公式:,,并且. 組合數(shù)的兩個性質:性質1:;性質2:.(規(guī)定) ⑶排列組合綜合問題 解排列組合問題,首先要用好兩個計數(shù)原理和排列組合的定義,即首先弄清是分類還是分步,是排列還是組合,同時要掌握一些常見類型的排列組合問題的解法: 1.特殊元素、特殊位置優(yōu)先法 元素優(yōu)先法:先考慮有限制條件的元素的要求,再考慮其他元素; 位置優(yōu)先法:先考慮有限制條件的位置的要求,再考慮其他位置; 2.分類分步法:對于較復雜的排列組合問題,常需要分類討論或分步計算,一定要做到分類明確,層次清楚,不重不漏. 3.排除法,從總體中排除不符合條件的方法數(shù),這是一種間接解題的方法. 4.捆綁法:某些元素必相鄰的排列,可以先將相鄰的元素“捆成一個”元素,與其它元素進行排列,然后再給那“一捆元素”內部排列. 5.插空法:某些元素不相鄰的排列,可以先排其它元素,再讓不相鄰的元素插空. 6.插板法:個相同元素,分成組,每組至少一個的分組問題——把個元素排成一排,從個空中選個空,各插一個隔板,有. 7.分組、分配法:分組問題(分成幾堆,無序).有等分、不等分、部分等分之別.一般地平均分成堆(組),必須除以!,如果有堆(組)元素個數(shù)相等,必須除以! 8.錯位法:編號為1至的個小球放入編號為1到的個盒子里,每個盒子放一個小球,要求小球與盒子的編號都不同,這種排列稱為錯位排列,特別當,3,4,5時的錯位數(shù)各為1,2,9,44.關于5、6、7個元素的錯位排列的計算,可以用剔除法轉化為2個、3個、4個元素的錯位排列的問題. 1.排列與組合應用題,主要考查有附加條件的應用問題,解決此類問題通常有三種途徑: ①元素分析法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素; ②位置分析法:以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置; ③間接法:先不考慮附加條件,計算出排列或組合數(shù),再減去不符合要求的排列數(shù)或組合數(shù). 求解時應注意先把具體問題轉化或歸結為排列或組合問題;再通過分析確定運用分類計數(shù)原理還是分步計數(shù)原理;然后分析題目條件,避免“選取”時重復和遺漏;最后列出式子計算作答. 2.具體的解題策略有: ①對特殊元素進行優(yōu)先安排; ②理解題意后進行合理和準確分類,分類后要驗證是否不重不漏; ③對于抽出部分元素進行排列的問題一般是先選后排,以防出現(xiàn)重復; ④對于元素相鄰的條件,采取捆綁法;對于元素間隔排列的問題,采取插空法或隔板法; ⑤順序固定的問題用除法處理;分幾排的問題可以轉化為直排問題處理; ⑥對于正面考慮太復雜的問題,可以考慮反面. ⑦對于一些排列數(shù)與組合數(shù)的問題,需要構造模型. 典例分析 排列數(shù)組合數(shù)的簡單計算 【例1】 對于滿足的正整數(shù),( ) A. B. C. D. 【例2】 計算______. 【例3】 計算,; 【例4】 計算______,_______. 【例5】 計算,; 【例6】 計算,,,,. 【例7】 已知,求的值. 【例8】 解不等式 【例9】 證明:. 【例10】 解方程. 【例11】 解不等式. 【例12】 解方程: 【例13】 解不等式:. 【例14】 設表示不超過的最大整數(shù)(如,),對于給定的,定義,,則當時,函數(shù)的值域是( ) A. B. C. D. 【例15】 組合數(shù)恒等于( ) A. B. C. D. 【例16】 已知,求、的值. 排列數(shù)組合數(shù)公式的應用 【例17】 已知,求的值. 【例18】 若,則_______ 【例19】 若,則 【例20】 證明: 【例21】 證明:. 【例22】 求證: . 【例23】 證明:. 【例24】 證明:. 【例25】 求證:; 【例26】 計算:, 【例27】 證明:.(其中) 【例28】 解方程 【例29】 確定函數(shù)的單調區(qū)間. 【例30】 規(guī)定,其中,為正整數(shù),且,這是排列數(shù)(是正整數(shù),且)的一種推廣. ⑴求的值; ⑵排列數(shù)的兩個性質:①,②(其中是正整數(shù)).是否都能推廣到(,是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 排列與組合 版塊四 排列數(shù)組合數(shù)的計算與證明完整講義學生版 2019 2020 年高 數(shù)學 排列 組合 版塊 數(shù)組 合數(shù) 計算 證明 完整 講義 學生
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-2610794.html