【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無(wú)水印,高清圖,,壓縮包內(nèi)文檔可直接點(diǎn)開預(yù)覽,需要原稿請(qǐng)自助充值下載,請(qǐng)見壓縮包內(nèi)的文件,所見才能所得,下載可得到【資源目錄】下的所有文件哦--有疑問(wèn)可咨詢QQ:1304139763 或 414951605
JIANGSU UNIVERSITY OF TECHNOLOGY
“專接本”畢業(yè)設(shè)計(jì)(論文)
螺旋彈簧疲勞試驗(yàn)機(jī)設(shè)計(jì)
學(xué)院名稱: 汽車與交通工程學(xué)院
專 業(yè): ****
班 級(jí): (按教務(wù)網(wǎng)班級(jí)名稱填寫)
姓 名:
指導(dǎo)教師姓名: 張蓉
指導(dǎo)教師職稱: (請(qǐng)準(zhǔn)確填寫導(dǎo)師職稱)
2015 年 6 月
VI
螺旋彈簧疲勞試驗(yàn)機(jī)設(shè)計(jì)
摘 要:整機(jī)結(jié)構(gòu)主要由電動(dòng)機(jī)、機(jī)架、傳動(dòng)帶、偏心輪構(gòu)成。由電動(dòng)機(jī)產(chǎn)生動(dòng)力通過(guò)帶輪減速器將需要的動(dòng)力傳遞到帶輪上,帶輪帶動(dòng)V帶,從而帶動(dòng)整機(jī)裝置運(yùn)動(dòng)
本論文研究?jī)?nèi)容摘要:
(1) 螺旋彈簧疲勞試驗(yàn)機(jī)總體結(jié)構(gòu)設(shè)計(jì)。
(2) 螺旋彈簧疲勞試驗(yàn)機(jī)工作性能分析。
(3)電動(dòng)機(jī)的選擇。
(4)對(duì)螺旋彈簧疲勞試驗(yàn)機(jī)的傳動(dòng)系統(tǒng)、執(zhí)行部件及機(jī)架設(shè)計(jì)。
(5)對(duì)設(shè)計(jì)零件進(jìn)行設(shè)計(jì)計(jì)算分析和校核。
(6)繪制整機(jī)裝配圖及重要部件裝配圖和設(shè)計(jì)零件的零件圖。?
?
關(guān)鍵詞:螺旋彈簧疲勞試驗(yàn)機(jī),結(jié)構(gòu)設(shè)計(jì)
The design of the spiral spring fatigue testing machine
Abstract:The structure is mainly composed of a motor, a frame, a transmission belt, an eccentric wheel. Produced by the motor power through a belt wheel speed reducer will need to transfer the power to the belt wheel, belt wheel drives the V belt, so as to drive the movement of the whole device
Abstract this thesis research:
(1) the overall structure design of helical spring fatigue testing machine.
(2) analysis of helical spring fatigue testing machine performance.
(3) the choice of motor.
(4) transmission system, execution unit and frame design of helical spring fatigue testing machine.
(5) the design of parts of design calculation and check.
(6) drawing machine assembly drawing and assembly drawing design of important parts and parts drawings.
Keywords: helical spring fatigue testing machine, structure design
江蘇理工學(xué)院汽車與交通工程學(xué)院畢業(yè)論文
目 錄
第1章 緒論 1
1.1課題研究的目的和意義 1
1.2研究?jī)?nèi)容 2
1.3設(shè)計(jì)方案 2
第2章 螺旋彈簧疲勞試驗(yàn)機(jī)總體參數(shù)的設(shè)計(jì) 6
2.1 系統(tǒng)總體方案的分析 6
2.2傳動(dòng)原理圖 6
2.3大彈簧設(shè)計(jì)計(jì)算 7
2.4計(jì)算切削功率所需切削速度的確定 12
2.5 由切削功率推算許用工作轉(zhuǎn)速 17
第3章 帶傳動(dòng)的計(jì)算 20
3.1 帶傳動(dòng)設(shè)計(jì) 20
3.2選擇帶型 21
3.3確定帶輪的基準(zhǔn)直徑并驗(yàn)證帶速 22
3.4確定中心距離、帶的基準(zhǔn)長(zhǎng)度并驗(yàn)算小輪包角 23
3.5確定帶的根數(shù)z 24
3.6確定帶輪的結(jié)構(gòu)和尺寸 24
3.7確定帶的張緊裝置 24
第4章 主軸組件要求與設(shè)計(jì)計(jì)算 27
4.1 主軸的基本要求 27
4.1.1 旋轉(zhuǎn)精度 27
4.1.2 剛度 27
4.1.3 抗振性 28
4.1.4 溫升和熱變形 28
4.1.5 耐磨性 29
4.2 主軸組件的布局 29
4.3 主軸結(jié)構(gòu)的初步擬定 32
4.4 主軸的材料與熱處理 32
4.5 主軸的技術(shù)要求 33
4.6 主軸直徑的選擇 33
4.7 主軸前后軸承的選擇 34
4.8 軸承的選型及校核 35
4.9 主軸前端懸伸量 37
4.10 主軸支承跨距 38
4.11 主軸結(jié)構(gòu)圖 39
4.12 主軸組件的驗(yàn)算 39
4.12.1 支承的簡(jiǎn)化 39
4.12.2 主軸的撓度 40
4.12.3 主軸傾角 41
第5章 鍵的選擇與校核 49
5.1 帶輪1上鍵的選擇與校核 49
5.1.1鍵的選擇 49
5.1.2 鍵的校核 49
5.2 帶輪2上鍵的選擇與校核 51
5.2.1 鍵的選擇 51
5.2.2 鍵的校核 51
第6章 試驗(yàn)機(jī)其他主要零件的設(shè)計(jì)與校核 53
6.1 偏心輪尺寸的設(shè)計(jì)與校核 53
6.1.1 偏心輪尺寸的設(shè)計(jì) 53
6.1.2 偏心輪的校核 53
6.2 連接軸(一)的設(shè)計(jì)與校核 55
6.2.1 連接軸的設(shè)計(jì) 55
6.2.2 連接軸的校核 55
6.3 連接軸(二)的設(shè)計(jì)與校核 60
6.4 連桿的設(shè)計(jì)與校核 61
6.4.1 連桿的設(shè)計(jì) 61
6.4.2 連桿的校核 61
結(jié) 論 63
參考文獻(xiàn) 64
致 謝 65
第1章 緒論
1.1課題研究的目的和意義
螺旋彈簧疲勞試驗(yàn)機(jī)是在各種條件、環(huán)境下測(cè)定螺旋彈簧等的機(jī)械性能、工藝性能、內(nèi)部缺陷和校驗(yàn)彈簧疲勞的精密測(cè)試儀器,可以對(duì)材料彈簧疲勞等試驗(yàn)。在研究探索新材料、新工藝、新技術(shù)和新結(jié)構(gòu)的過(guò)程中,試驗(yàn)機(jī)是一種不可缺少的重要測(cè)試儀器。廣泛應(yīng)用于機(jī)械、冶金、石油、化工、建材、建工、航空航天、造船、交通運(yùn)輸、等工業(yè)部門以及大專院校、科研院所的相關(guān)實(shí)驗(yàn)室。對(duì)有效使用材料、改進(jìn)工藝、提高產(chǎn)品質(zhì)量、降低成本、保證產(chǎn)品安全可靠等都具有重要作用。
中國(guó)螺旋彈簧疲勞試驗(yàn)機(jī)的現(xiàn)狀驗(yàn)機(jī)制造行業(yè)在舊中國(guó)是空白,中華民共和國(guó)成立后,黨和政府十分重視我國(guó)計(jì)量檢測(cè)事業(yè)的歷史悠久,但試計(jì)量檢測(cè)技術(shù)的發(fā)展,采取了許多重要措來(lái)發(fā)展儀器儀表工業(yè)。經(jīng)過(guò)五十多年的努力,我國(guó)材料試驗(yàn)機(jī)的制造,從無(wú)到有從小到大,從單參數(shù)到多參數(shù),從靜態(tài)到動(dòng)態(tài),逐步發(fā)展成初具規(guī)模,負(fù)荷試驗(yàn)機(jī)(如沖擊試驗(yàn)機(jī)和疲勞試驗(yàn)機(jī)等)的能力,有效地促進(jìn)了國(guó)民經(jīng)濟(jì)建設(shè)和國(guó)防建設(shè)的發(fā)展。 長(zhǎng)期以來(lái),試驗(yàn)機(jī)也一直是歐美對(duì)我國(guó)尖端科研課題限制出口的產(chǎn)品。我國(guó)的國(guó)防科技工業(yè)和其它部門的科產(chǎn)業(yè),就必須走自主創(chuàng)新的道路。在新三思集團(tuán)研院所不能直接進(jìn)口某些關(guān)鍵材料試驗(yàn)的儀器設(shè)備。所以,要發(fā)展中國(guó)的試驗(yàn)機(jī)公司為首的中國(guó)試驗(yàn)機(jī)民營(yíng)企業(yè)的不斷努力下,中國(guó)試驗(yàn)機(jī)的技術(shù)水平得到了長(zhǎng)足的進(jìn)步,國(guó)內(nèi)與國(guó)外的試驗(yàn)機(jī)技術(shù)水平的差距正在逐步的縮小。
該設(shè)計(jì)培養(yǎng)了學(xué)生綜合運(yùn)用各學(xué)科的基本理論、專業(yè)知識(shí)和基本技能,提高分析與解決實(shí)際問(wèn)題的能力,同時(shí)還培養(yǎng)學(xué)生的獨(dú)立工作能力、開發(fā)創(chuàng)造能力,其就是對(duì)學(xué)生自身綜合素質(zhì)的考驗(yàn)和提升?!堵菪龔椈善谠囼?yàn)機(jī)設(shè)計(jì)》是在學(xué)完了機(jī)械制圖、機(jī)械制造技術(shù)基礎(chǔ)、機(jī)械設(shè)計(jì)、機(jī)械工程材料等的基礎(chǔ)下,進(jìn)行的一個(gè)全面的考核。本次設(shè)計(jì)也要培養(yǎng)自己的自學(xué)與創(chuàng)新能力。因此本次設(shè)計(jì)綜合性和實(shí)踐性強(qiáng)、涉及知識(shí)面廣。所以在設(shè)計(jì)中既要注意基本概念、基本理論,又要注意生產(chǎn)實(shí)踐的需要,只有將各種理論與生產(chǎn)實(shí)踐相結(jié)合,才能很好的完成本次設(shè)計(jì)。
1.2研究?jī)?nèi)容
(1)彈簧疲勞試驗(yàn)機(jī)的需求分析。
(2)彈簧疲勞試驗(yàn)機(jī)的總體結(jié)構(gòu)設(shè)計(jì)。
(3)確定彈簧疲勞試驗(yàn)機(jī)的結(jié)構(gòu)參數(shù),設(shè)計(jì)主要零部件并進(jìn)行強(qiáng)度計(jì)算。
(4)繪制主要零件圖和裝配圖。
(5)整理并組織相關(guān)材料,完成設(shè)計(jì)圖及設(shè)計(jì)說(shuō)明書的撰寫。
1.3設(shè)計(jì)方案
1.方案一
電動(dòng)機(jī)產(chǎn)生動(dòng)力由渦桿傳到渦輪軸,然后通過(guò)蝸輪傳至錐齒輪,再通過(guò)錐齒輪傳動(dòng)系統(tǒng)傳遞到絲杠。與此同時(shí)與絲杠配合的絲杠螺母則帶動(dòng)橫梁上下運(yùn)動(dòng),而下夾具則是固定在試驗(yàn)臺(tái)上,至此完成試驗(yàn)。如圖1-1所示:
圖1-1方案一示意圖
2方案二
電動(dòng)機(jī)產(chǎn)生動(dòng)力后輸出到減速器,然后進(jìn)入渦輪蝸桿傳動(dòng)系統(tǒng),進(jìn)一步減速并改變運(yùn)動(dòng)旋轉(zhuǎn)方向后,通過(guò)鏈傳動(dòng)系統(tǒng)傳遞到絲杠。由鏈輪的轉(zhuǎn)動(dòng)帶動(dòng)絲杠轉(zhuǎn)動(dòng)。與此同時(shí)與絲杠配合的絲杠螺母則帶動(dòng)橫梁上下運(yùn)動(dòng),而下夾具則是固定在試驗(yàn)臺(tái)上,至此完成試驗(yàn)。如圖1-2所示:
圖-2 方案二示意圖
3方案三
電動(dòng)機(jī)產(chǎn)生動(dòng)力后輸出到減速器,然后由直齒輪帶動(dòng)絲杠轉(zhuǎn)動(dòng)。絲杠轉(zhuǎn)動(dòng)同時(shí)兩個(gè)絲杠螺母同步背向或相向運(yùn)動(dòng),兩個(gè)連桿同時(shí)遠(yuǎn)離或靠近。這就使下夾具所在試驗(yàn)臺(tái)向上或向下運(yùn)動(dòng)。上面橫梁可以固定,也可以在液壓、絲杠等外力驅(qū)動(dòng)下上下運(yùn)動(dòng),至此完成試驗(yàn)。如圖1-3所示:
圖1-3方案三示意圖
4方案四
本方案與上述兩種文件有所不同,本方案是由油泵驅(qū)動(dòng)油缸里的活塞提供外部試驗(yàn)力。油泵輸出油經(jīng)進(jìn)油管達(dá)到液壓缸,然后經(jīng)回油管路流回回油缸再次利用。此方案要求液壓系統(tǒng)要有較精確的控制閥的配合才能實(shí)現(xiàn)試驗(yàn)?zāi)康?。而目前液壓控制閥與計(jì)算機(jī)控制聯(lián)系越來(lái)越密切,國(guó)外在計(jì)算機(jī)控制領(lǐng)域取得了較大進(jìn)展,可惜的是我國(guó)控制系統(tǒng)方面還較薄弱。如圖1-4所示:
圖1-4方案四示意圖
5方案五
本機(jī)采用傳統(tǒng)的連桿機(jī)構(gòu)。機(jī)械部分由電機(jī)、偏心裝置、隨動(dòng)器、直線導(dǎo)軌、夾具等組成。動(dòng)力由變頻調(diào)速電動(dòng)機(jī)輸出, 通過(guò)減速器、軸承座、偏心裝置傳遞至連桿, 帶動(dòng)壓盤對(duì)彈簧進(jìn)行壓縮 (或拉伸) 往復(fù)疲勞試驗(yàn)。如圖 1 所示。對(duì)導(dǎo)向裝置產(chǎn)生較大的側(cè)向力 , 設(shè)計(jì)的壓力角盡量減小, 采用加長(zhǎng)連桿的方式; 導(dǎo)向裝置的設(shè)計(jì), 導(dǎo)向裝置采用直線導(dǎo)軌。這樣, 不僅簡(jiǎn)化了結(jié)構(gòu), 降低了成本,而且試驗(yàn)機(jī)在運(yùn)行過(guò)程中, 同樣穩(wěn)定、可靠。彈簧預(yù)壓力的調(diào)節(jié), 方便、輕捷。對(duì)導(dǎo)向裝置產(chǎn)生較大的側(cè)向力 , 設(shè)計(jì)的壓力角盡量減小, 采用加長(zhǎng)連桿的方式; 導(dǎo)向裝置的設(shè)計(jì), 導(dǎo)向裝置采用直線導(dǎo)軌。這樣, 不僅簡(jiǎn)化了結(jié)構(gòu), 降低了成本,而且試驗(yàn)機(jī)在運(yùn)行過(guò)程中, 同樣穩(wěn)定、可靠。彈簧預(yù)壓力的調(diào)節(jié), 方便、輕捷。
圖5 方案5示意圖
由于以上方案都存在操作安裝不方便的問(wèn)題,均不采用,最終方案見下一章節(jié)所述.
第 66 頁(yè) 共 72 頁(yè)
第2章 螺旋彈簧疲勞試驗(yàn)機(jī)總體參數(shù)的設(shè)計(jì)
2.1 系統(tǒng)總體方案的分析
我們螺旋彈簧疲勞試驗(yàn)機(jī)的目的是要將主軸的水平旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為彈簧的上下往復(fù)直線運(yùn)動(dòng)(壓縮或者伸長(zhǎng))。我們進(jìn)車間進(jìn)行實(shí)地考察,詢問(wèn)工人師傅。他們耐心的給我們講解運(yùn)動(dòng),還拆開主軸部位讓我們?cè)敿?xì)了解。憑借他們多年的操作經(jīng)驗(yàn),首先他們對(duì)我們改進(jìn)的課題給予了肯定,之后我們彼此交流了想法?;貋?lái)之后我們結(jié)合所學(xué)專業(yè)知識(shí)分析得如下運(yùn)動(dòng)簡(jiǎn)圖:
圖2-1 總體方案分析
2.2傳動(dòng)原理圖
我們螺旋彈簧疲勞試驗(yàn)機(jī)的目的是要將主軸的水平旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為彈簧的上下往復(fù)直線運(yùn)動(dòng)(壓縮或者伸長(zhǎng)),這讓我們想到了曲柄滑塊機(jī)構(gòu),如上圖4-1所示,曲柄1做回轉(zhuǎn)運(yùn)動(dòng),滑塊3在軌道4上作豎直方向往復(fù)直線運(yùn)動(dòng),連桿2可將曲柄1和滑塊3連接起來(lái),針對(duì)上述原理的分析并結(jié)合實(shí)際考慮強(qiáng)度、便與主軸配合以及使用壽命等等.
彈簧試驗(yàn)機(jī)的動(dòng)力由電磁調(diào)速電機(jī)輸出,將載荷傳遞到試驗(yàn)機(jī)的主動(dòng)軸上,主動(dòng)軸上裝有曲柄滑塊機(jī)構(gòu),由于曲柄相對(duì)很短,在機(jī)械設(shè)計(jì)中一般將其設(shè)計(jì)成偏心輪機(jī)構(gòu),偏心輪與驅(qū)動(dòng)桿之間通過(guò)連桿鉸接在一起。當(dāng)主動(dòng)軸帶動(dòng)偏心輪機(jī)構(gòu)轉(zhuǎn)動(dòng)時(shí),連桿把偏心輪的旋轉(zhuǎn)運(yùn)動(dòng)變成為驅(qū)動(dòng)桿的往復(fù)直線運(yùn)動(dòng),從而帶動(dòng)其頂端的彈簧壓盤做往復(fù)運(yùn)動(dòng),壓縮其間的彈簧,使彈簧受到往復(fù)的壓力,從而模擬其在工作狀態(tài)下的受力,如圖2-2所示,本實(shí)驗(yàn)的機(jī)械構(gòu)建主要由大帶輪、主軸、偏心連桿機(jī)構(gòu)、機(jī)架、彈簧壓盤座等組成,對(duì)應(yīng)著不同的試驗(yàn)彈簧直徑,有相對(duì)應(yīng)的一組彈簧壓盤與其對(duì)應(yīng),更換壓盤,即可進(jìn)行不同直徑的彈簧的檢測(cè)。
1-偏心輪、2-連桿、3-驅(qū)動(dòng)桿滑塊、4-彈簧壓盤、5-驅(qū)動(dòng)桿、彈簧、7-導(dǎo)軌、8-主軸、9-軸承座、10-軸承、11-機(jī)架、12-大帶輪、13-離合器
圖2-2 偏心輪疲勞試驗(yàn)機(jī)機(jī)械結(jié)構(gòu)簡(jiǎn)圖
2.3大彈簧設(shè)計(jì)計(jì)算
彈簧選擇圓柱螺旋壓縮彈簧[30],具體設(shè)計(jì)方法和步驟
1) 工作時(shí),假設(shè)彈簧所受最大工作載荷為600N,工作環(huán)境有腐蝕性,故選擇材料為1Cr18Ni9,類彈簧,許用切應(yīng)力,許用彎曲應(yīng)力, 彈性模量 ,切變模量 ,此種材料耐腐蝕,耐高溫,有良好的工藝性,適用于小彈簧。
2) 選擇旋繞比 ,暫取 ,
則根據(jù)公式
計(jì)算出曲度系數(shù)
3)根據(jù)安裝空間,初定彈簧中徑,
則根據(jù)公式
計(jì)算出
4)計(jì)算彈簧絲直徑
取
5)對(duì)于壓縮彈簧,工作圈數(shù)根據(jù)公式 計(jì)算
實(shí)際工作中正常情況下 ,為保證檢測(cè)時(shí)鉆桿過(guò)度偏向一邊時(shí)的儀器的安全,這里取
彈簧內(nèi)徑
彈簧外徑
彈簧節(jié)距
彈簧自由長(zhǎng)度
因在實(shí)際安裝中,允許的空間滿足不了所設(shè)計(jì)的彈簧自由高度值,也即過(guò)大,不符合實(shí)際應(yīng)用要求,需重新設(shè)計(jì)。
重新設(shè)計(jì)如下:
重選
則 曲度系數(shù):
彈簧絲直徑: 取
彈簧中徑:
彈簧內(nèi)徑:
彈簧外徑:
彈簧節(jié)距:
彈簧工作圈數(shù): 取
彈簧自由長(zhǎng)度: 取
7)驗(yàn)算穩(wěn)定性:細(xì)長(zhǎng)比 符合兩端固定彈簧的選擇標(biāo)準(zhǔn),故不需要進(jìn)行穩(wěn)定性驗(yàn)算。
8)疲勞強(qiáng)度和靜應(yīng)力強(qiáng)度的驗(yàn)算
疲勞強(qiáng)度驗(yàn)算公式
已知:
由 可得
對(duì)于變應(yīng)力作用下的普通圓柱螺旋壓縮彈簧,疲勞強(qiáng)度安全系數(shù)值按公式 計(jì)算,
式中:
--彈簧疲勞強(qiáng)度的設(shè)計(jì)安全系數(shù),當(dāng)彈簧的設(shè)計(jì)計(jì)算和材料的力學(xué)性能數(shù)據(jù)精確性高時(shí),取;
--彈簧材料的脈動(dòng)循環(huán)剪切疲勞極限,按變載荷作用次數(shù)N,由下表查??;
表3-1 彈簧參數(shù)表
變載荷作用次數(shù)N
取
故設(shè)計(jì)合理。
1)選材:
1Cr18Ni9
2)旋繞比:取, 則
3)彈簧中徑:
4)彈簧絲直徑: 取
5)對(duì)于壓縮彈簧工作圈數(shù)根據(jù)公式 計(jì)算,其中
在實(shí)際工作中正常情況下
這里取
則 取
6)計(jì)算彈簧內(nèi)徑,外徑,節(jié)距,自由長(zhǎng)度:
彈簧內(nèi)徑
彈簧外徑
彈簧節(jié)距
彈簧自由長(zhǎng)度 取
7)驗(yàn)算穩(wěn)定性:細(xì)長(zhǎng)比 符合兩端固定彈簧的選擇標(biāo)準(zhǔn),故不需要進(jìn)行穩(wěn)定性驗(yàn)算。
8)疲勞強(qiáng)度和靜應(yīng)力強(qiáng)度的驗(yàn)算
疲勞強(qiáng)度驗(yàn)算公式
由 可得
對(duì)于變應(yīng)力作用下的普通圓柱螺旋壓縮彈簧,疲勞強(qiáng)度安全系數(shù)值
按公式 演算
即 故彈簧設(shè)計(jì)合理。
大彈簧的有關(guān)參數(shù)如下表:
表3-2 彈簧參數(shù)表
參數(shù)名稱及代號(hào)
計(jì)算公式
結(jié)果
中徑
30mm
內(nèi)徑
25mm
外徑
35mm
旋繞比
6
長(zhǎng)細(xì)比
3.67
自由長(zhǎng)度
110mm
工作長(zhǎng)度
30.15mm
有效圈數(shù)
11.5圈
總?cè)?shù)
13.5圈
節(jié)距
9mm
軸向間距
4mm
展開長(zhǎng)度
1277.5mm
螺旋角
5.458°
質(zhì)量
0.203Kg
2.4計(jì)算切削功率所需切削速度的確定
切削速度(B點(diǎn)的速度)主要由所設(shè)計(jì)的偏心輪的轉(zhuǎn)速(銑床主軸的輸出轉(zhuǎn)速)、以及轉(zhuǎn)動(dòng)的位置等決定。經(jīng)過(guò)分析,當(dāng)轉(zhuǎn)速一定為N時(shí),得到一個(gè)轉(zhuǎn)速最大的位置,從而分析此位置,并進(jìn)行計(jì)算。
下圖2-3就為機(jī)構(gòu)運(yùn)動(dòng)的各個(gè)位置圖,我們可以借助它來(lái)進(jìn)行分析。
圖2-3 機(jī)構(gòu)運(yùn)動(dòng)位置圖
我們可以按照機(jī)械原理課程設(shè)計(jì)的方法對(duì)機(jī)構(gòu)運(yùn)動(dòng)的速度進(jìn)行分析,從而得到一個(gè)最大速度的運(yùn)動(dòng)點(diǎn)。
經(jīng)過(guò)分析,易得運(yùn)動(dòng)左右兩部分為對(duì)稱結(jié)構(gòu),速度也相互對(duì)稱,所以只需要分析一邊(取右邊)進(jìn)行。
經(jīng)過(guò)分析得到B點(diǎn)的速度可以根據(jù)A點(diǎn)的速度結(jié)合作圖的方法求得,公式如下所示 :
VA = 2πRN 式4-5;
VB = VA + VBA 式4-6;
方向: 豎直向下 桿1 桿2
大?。? ? 2πRN ?
1>、先分析從1點(diǎn)處到4點(diǎn)的位置的運(yùn)動(dòng):(1點(diǎn)VB為0),經(jīng)過(guò)分析它的速度由0開始逐漸增大。分析2點(diǎn)得各桿位置圖如下:
圖2-4 2點(diǎn)各桿位置圖
注:60表示偏心輪偏心長(zhǎng)度為60mm;100表示桿2 長(zhǎng)度為100mm;
根據(jù)2點(diǎn)各桿位置圖,進(jìn)行速度分析如下:
圖2-5 2點(diǎn)速度多邊形分析圖
注:Pb長(zhǎng)度表示VB 的大小;Pa2長(zhǎng)60表示VA大小,為一個(gè)標(biāo)定值(下同),所以
只需要比較Pb長(zhǎng)度就可以比較VB 的大小
分析上圖4-3的3點(diǎn)得各桿位置圖如下:
圖2-6 3點(diǎn)各桿位置圖
根據(jù)3點(diǎn)各桿位置圖,進(jìn)行速度分析如下:
圖2-7 3點(diǎn)速度多邊形分析圖
對(duì)比以上兩點(diǎn)的Pb長(zhǎng),由于Pb3 > Pb2 所以取3、4點(diǎn)之間的一點(diǎn)再進(jìn)行分析
對(duì)上圖2-3中的3、4中間點(diǎn)進(jìn)行分析得各連桿的位置圖如下:
圖2-8 3、4點(diǎn)中間點(diǎn)各桿位置圖
根據(jù)3、4中間點(diǎn)各桿位置圖,進(jìn)行速度分析如下:
圖2-9 3、4點(diǎn)中間點(diǎn)速度多邊形分析圖
得:
Pb3.5 < Pb3;
所以在1點(diǎn)到4點(diǎn)的過(guò)程中取在第3點(diǎn),B點(diǎn)有最大速度。
2>、分析上圖4-3所示4點(diǎn)位置的運(yùn)動(dòng)
對(duì)圖4-3中的4點(diǎn)進(jìn)行分析得各連桿的位置圖如下:
圖2-10 4點(diǎn)各桿位置圖
注:以上數(shù)字所代表的意義同上;
根據(jù)4點(diǎn)各桿位置圖,進(jìn)行速度分析如下:
圖2-11 4點(diǎn)速度多邊形分析圖
說(shuō)明:Pb代表VB大小與Pa代表VA的大小相等、但b a重合代表VBA的大小為0;
所以易得:
VB = VA 式6-7;
3>、對(duì)如圖4-3中的4點(diǎn)到7點(diǎn)的運(yùn)動(dòng)進(jìn)行分析
據(jù)5點(diǎn)時(shí)各桿的位置圖,繪制如下5點(diǎn)的速度分析圖:
圖2-12 5點(diǎn)速度多邊形分析圖
說(shuō)明:Pb5線段長(zhǎng)度代表的是VB的大??;
根據(jù)6點(diǎn)的各桿的位置圖,繪制如下6點(diǎn)的速度圖:
圖2-13 6點(diǎn)速度多邊形分析圖
分析7點(diǎn)易得VB的值為 0;
對(duì)4、5、6、7點(diǎn)的VB對(duì)比得:其值在逐漸的減小。
綜上VB的大體變化規(guī)律為由如圖6-1所示1——3點(diǎn)時(shí)逐漸增大;3點(diǎn)到4點(diǎn)減小到與VA相等大?。?點(diǎn)到7點(diǎn)的過(guò)程為一個(gè)逐漸遞減的過(guò)程,直到7點(diǎn)減小到0。
所以,據(jù)切削功率的計(jì)算公式取最大的切削速度進(jìn)行計(jì)算,故取3點(diǎn)的速度大
進(jìn)行計(jì)算:
Pa2長(zhǎng)60 , Pb2 為70 ,R=60mm
VA = 2πRN 式4-7
所以:
VB = 2.4πRN
= 0.12πN
2.5 由切削功率推算許用工作轉(zhuǎn)速
由于帶在傳動(dòng)過(guò)程中,存在著功率的損失,查《機(jī)械設(shè)計(jì)課程設(shè)計(jì)手冊(cè)》可得,
為V帶的效率,為第一、二對(duì)軸承的效率, 為聯(lián)軸器的效率。
則電機(jī)所需功率為P=6.5160.876=7.436KW
查《機(jī)械設(shè)計(jì)課程設(shè)計(jì)手冊(cè)》得:
選擇,其銘牌如下表2-1:
表2-1 Y系列三相異步電動(dòng)機(jī)
電動(dòng)機(jī)型號(hào)
額定功率 KW
滿載轉(zhuǎn)速 r/min
堵轉(zhuǎn)轉(zhuǎn)矩/額定轉(zhuǎn)矩
最大轉(zhuǎn)矩/額定轉(zhuǎn)矩
質(zhì)量 Kg
Y132M-4
7.5
同步轉(zhuǎn)速1500 r/min,4級(jí)
1440
2.2
2.2
81
(a)
(b)
圖2-14 電動(dòng)機(jī)的安裝及外形尺寸示意圖
表2-2 電動(dòng)機(jī)的安裝技術(shù)參數(shù)
中心高/mm
外型尺寸/mm
L×(AC/2+AD)×HD
底腳安裝
尺寸A×B
地腳螺栓 孔直徑K
軸伸尺
寸D×E
裝鍵部位
尺寸F×GD
132
515× 345× 315
216 ×178
12
38× 80
10 ×43
第3章 帶傳動(dòng)的計(jì)算
3.1 帶傳動(dòng)設(shè)計(jì)
輸出功率P=7.5kW,轉(zhuǎn)速n1=1440r/min,n2=500r/min
表3-1 工作情況系數(shù)
工作機(jī)
原動(dòng)機(jī)
ⅰ類
ⅱ類
一天工作時(shí)間/h
10~16
10~16
載荷
平穩(wěn)
液體攪拌機(jī);離心式水泵;通風(fēng)機(jī)和鼓風(fēng)機(jī)();離心式壓縮機(jī);輕型運(yùn)輸機(jī)
1.0
1.1
1.2
1.1
1.2
1.3
載荷
變動(dòng)小
帶式運(yùn)輸機(jī)(運(yùn)送砂石、谷物),通風(fēng)機(jī)();發(fā)電機(jī);旋轉(zhuǎn)式水泵;金屬切削機(jī)床;剪床;壓力機(jī);印刷機(jī);振動(dòng)篩
1.1
1.2
1.3
1.2
1.3
1.4
載荷
變動(dòng)較大
螺旋式運(yùn)輸機(jī);斗式上料機(jī);往復(fù)式水泵和壓縮機(jī);鍛錘;磨粉機(jī);鋸木機(jī)和木工機(jī)械;紡織機(jī)械
1.2
1.3
1.4
1.4
1.5
1.6
載荷
變動(dòng)很大
破碎機(jī)(旋轉(zhuǎn)式、顎式等);球磨機(jī);棒磨機(jī);起重機(jī);挖掘機(jī);橡膠輥壓機(jī)
1.3
1.4
1.5
1.5
1.6
1.8
根據(jù)V帶的載荷平穩(wěn),兩班工作制(16小時(shí)),查《機(jī)械設(shè)計(jì)》P296表4,
取KA=1.1。即
3.2選擇帶型
普通V帶的帶型根據(jù)傳動(dòng)的設(shè)計(jì)功率Pd和小帶輪的轉(zhuǎn)速n1按《機(jī)械設(shè)計(jì)》P297圖13-11選取。
圖3-1 帶型圖
根據(jù)算出的Pd=8.25kW及小帶輪轉(zhuǎn)速n1=1440r/min ,查圖得:dd=80~100可知應(yīng)選取A型V帶。
3.3確定帶輪的基準(zhǔn)直徑并驗(yàn)證帶速
由《機(jī)械設(shè)計(jì)》P298表13-7查得,小帶輪基準(zhǔn)直徑為80~100mm
則取dd1=90mm> ddmin.=75 mm(dd1根據(jù)P295表13-4查得)
表3-2 V帶帶輪最小基準(zhǔn)直徑
槽型
Y
Z
A
B
C
D
E
20
50
75
125
200
355
500
由《機(jī)械設(shè)計(jì)》P295表13-4查“V帶輪的基準(zhǔn)直徑”,得=250mm
① 誤差驗(yàn)算傳動(dòng)比: (為彈性滑動(dòng)率)
誤差 符合要求
② 帶速
滿足5m/s
300mm,所以宜選用E型輪輻式帶輪。
總之,小帶輪選H型孔板式結(jié)構(gòu),大帶輪選擇E型輪輻式結(jié)構(gòu)。
帶輪的材料:選用灰鑄鐵,HT200。
3.7確定帶的張緊裝置
選用結(jié)構(gòu)簡(jiǎn)單,調(diào)整方便的定期調(diào)整中心距的張緊裝置。
3.8計(jì)算壓軸力
由《機(jī)械設(shè)計(jì)》P303表13-12查得,A型帶的初拉力F0=133.46N,上面已得到=153.36o,z=4,則
對(duì)帶輪的主要要求是質(zhì)量小且分布均勻、工藝性好、與帶接觸的工作表面加工精度要高,以減少帶的磨損。轉(zhuǎn)速高時(shí)要進(jìn)行動(dòng)平衡,對(duì)于鑄造和焊接帶輪的內(nèi)應(yīng)力要小, 帶輪由輪緣、腹板(輪輻)和輪轂三部分組成。帶輪的外圈環(huán)形部分稱為輪緣,輪緣是帶輪的工作部分,用以安裝傳動(dòng)帶,制有梯形輪槽。由于普通V帶兩側(cè)面間的夾角是40°,為了適應(yīng)V帶在帶輪上彎曲時(shí)截面變形而使楔角減小,故規(guī)定普通V帶輪槽角 為32°、34°、36°、38°(按帶的型號(hào)及帶輪直徑確定),輪槽尺寸見表7-3。裝在軸上的筒形部分稱為輪轂,是帶輪與軸的聯(lián)接部分。中間部分稱為輪幅(腹板),用來(lái)聯(lián)接輪緣與輪轂成一整體。
表3-5 普通V帶輪的輪槽尺寸(摘自GB/T13575.1-92)
項(xiàng)目
符號(hào)
槽型
Y
Z
A
B
C
D
E
基準(zhǔn)寬度
b p
5.3
8.5
11.0
14.0
19.0
27.0
32.0
基準(zhǔn)線上槽深
h amin
1.6
2.0
2.75
3.5
4.8
8.1
9.6
基準(zhǔn)線下槽深
h fmin
4.7
7.0
8.7
10.8
14.3
19.9
23.4
槽間距
e
8 ± 0.3
12 ± 0.3
15 ± 0.3
19 ± 0.4
25.5 ± 0.5
37 ± 0.6
44.5 ± 0.7
第一槽對(duì)稱面至端面的距離
f min
6
7
9
11.5
16
23
28
最小輪緣厚
5
5.5
6
7.5
10
12
15
帶輪寬
B
B =( z -1) e + 2 f ? z —輪槽數(shù)
外徑
d a
輪 槽 角
32°
對(duì)應(yīng)的基準(zhǔn)直徑 d d
≤ 60
-
-
-
-
-
-
34°
-
≤ 80
≤ 118
≤ 190
≤ 315
-
-
36°
60
-
-
-
-
≤ 475
≤ 600
38°
-
> 80
> 118
> 190
> 315
> 475
> 600
極限偏差
± 1
± 0.5
V帶輪按腹板(輪輻)結(jié)構(gòu)的不同分為以下幾種型式:
(1) 實(shí)心帶輪:用于尺寸較小的帶輪(dd≤(2.5~3)d時(shí)),如圖3-2a。
(2) 腹板帶輪:用于中小尺寸的帶輪(dd≤ 300mm 時(shí)),如圖3-2b。
(3) 孔板帶輪:用于尺寸較大的帶輪((dd-d)> 100 mm 時(shí)),如圖3-2c 。
(4) 橢圓輪輻帶輪:用于尺寸大的帶輪(dd> 500mm 時(shí)),如圖3-2d。
(a) (b) (c) (d)
圖3-2 帶輪結(jié)構(gòu)類型
根據(jù)設(shè)計(jì)結(jié)果,可以得出結(jié)論:小帶輪選擇實(shí)心帶輪,如圖(a),大帶輪選擇孔板帶輪如圖(c)
第4章 主軸組件要求與設(shè)計(jì)計(jì)算
主軸組件是特殊磨頭的執(zhí)行件,它的功用是支承并帶動(dòng)砂輪旋轉(zhuǎn),完成表面成形運(yùn)動(dòng),同時(shí)還起傳遞運(yùn)動(dòng)和扭矩、承受切削力和驅(qū)動(dòng)力等載荷的作用。由于主軸組件的工作性能直接影響到特殊磨頭的加工質(zhì)量和生產(chǎn)率,因此它是特殊磨頭中的一個(gè)關(guān)鍵組件。
主軸和一般傳動(dòng)軸的相同點(diǎn)是,兩者都傳遞運(yùn)動(dòng)、扭矩并承受傳動(dòng)力,都要保證傳動(dòng)件和支承的正常工件條件,但主軸直接承受切削力,還要帶動(dòng)工件或刀具,實(shí)現(xiàn)表面成形運(yùn)動(dòng),因此對(duì)主軸有較高的要求。
4.1 主軸的基本要求
4.1.1 旋轉(zhuǎn)精度
主軸的旋轉(zhuǎn)精度是指主軸在手動(dòng)或低速、空載時(shí),主軸前端定位面的徑向跳動(dòng)△r、端面跳動(dòng)△a和軸向竄動(dòng)值△o。如圖2-1所示:圖中實(shí)線表示理想的旋轉(zhuǎn)軸線,虛線表示實(shí)際的旋轉(zhuǎn)軸線。當(dāng)主軸以工作轉(zhuǎn)速旋轉(zhuǎn)時(shí),主軸回轉(zhuǎn)軸線在空間的漂移量即為運(yùn)動(dòng)精度。
主軸組件的旋轉(zhuǎn)精度取決于部件中各主要件(如主軸、軸承及支承座孔等)的制造精度和裝配、調(diào)整精度;運(yùn)動(dòng)精度還取決于主軸的轉(zhuǎn)速、軸承的性能和潤(rùn)滑以及主軸部件的動(dòng)態(tài)特性。各類通用特殊磨頭主軸部件的旋轉(zhuǎn)精度已在特殊磨頭精度標(biāo)準(zhǔn)中作了規(guī)定,專用特殊磨頭主軸部件的旋轉(zhuǎn)精度則根據(jù)工件精度要求確定。
圖4-1 主軸的旋轉(zhuǎn)誤差
4.1.2 剛度
主軸組件的剛度K是指其在承受外載荷時(shí)抵抗變形的能力,如圖2-2所示,即K=F/y(單位為N/m),剛度的倒數(shù)y/F稱為柔度。主軸組件的剛度,是主軸、軸承和支承座的剛度的綜合反映,它直接影響主軸組件的旋轉(zhuǎn)精度。顯然,主軸組件的剛度越高,主軸受力后的變形就越小,如若剛度不足,在加工精度方面,主軸前端彈性變形直接影響著工件的精度;在傳動(dòng)質(zhì)量方面,主軸的彎曲變形將惡化傳動(dòng)齒輪的嚙合狀況,并使軸承產(chǎn)生側(cè)邊壓力,從而使這些零件的磨損加劇,壽命縮短;在工件平穩(wěn)性方面,將使主軸在變化的切削力和傳動(dòng)力等作用下,產(chǎn)生過(guò)大的受迫振動(dòng),并容易引起切削自激振動(dòng),降低了工件的平穩(wěn)性。
圖4-2 主軸組件靜剛度
主軸組件的剛度是綜合剛度,影響主軸組件剛度的因素很多,主要有:主軸的結(jié)構(gòu)尺寸、軸承的類型及其配置型式、軸承的間隙大小、傳動(dòng)件的布置方式、主軸組件的制造與裝配質(zhì)量等。
4.1.3 抗振性
主軸組件的抗振性是指其抵抗受迫振動(dòng)和自激振動(dòng)而保持平穩(wěn)運(yùn)轉(zhuǎn)的能力。在切削過(guò)程中,主軸組件不僅受靜載荷的作用,同時(shí)也受沖擊載荷和交變載荷的作用,使主軸產(chǎn)生振動(dòng)。如果主軸組件的抗振性差,工作時(shí)容易產(chǎn)生振動(dòng),從而影響工件的表面質(zhì)量,降低刀具的耐用度和主軸軸承的壽命,還會(huì)產(chǎn)生噪聲影響工作環(huán)境。隨著特殊磨頭向高精度、高效率方向發(fā)展,對(duì)抗振性要求越來(lái)越高。
評(píng)價(jià)主軸組件的抗振性,主要考慮其抵抗受迫振動(dòng)和自激振動(dòng)能力的大小。
4.1.4 溫升和熱變形
主軸組件工作時(shí)因各種相對(duì)運(yùn)動(dòng)處的摩擦和攪油等而發(fā)熱,產(chǎn)生了溫升,溫升使主軸組件的形狀和位置發(fā)生畸變,稱為熱變形。熱變形應(yīng)以主軸組件運(yùn)轉(zhuǎn)一定時(shí)間后各部分位置的變化來(lái)度量。
主軸組件溫升和熱變形,使特殊磨頭各部件間相對(duì)位置精度遭到破壞,影響工件加工精度,高精度特殊磨頭尤為嚴(yán)重;熱變形造成主軸彎曲,使傳動(dòng)齒輪和軸承的工作狀態(tài)變壞;熱變形還使主軸和軸承,軸承與支承座之間已調(diào)整好的間隙和配合發(fā)生變化,影響軸承正常工作,間隙過(guò)小將加速齒輪和軸承等零件的磨損,嚴(yán)重時(shí)甚至?xí)l(fā)生軸承抱軸現(xiàn)象。
影響主軸組件溫升、熱變形的主要因素有:軸承的類型和布置方式,軸承間隙及預(yù)緊力的大小,潤(rùn)滑方式和散熱條件等。
4.1.5 耐磨性
主軸組件的耐磨性是指長(zhǎng)期保持其原始精度的能力,即精度的保持性。因此,主軸組件各個(gè)滑動(dòng)表面,包括主軸端部定位面、錐孔,與滑動(dòng)軸承配合的軸頸表面,移動(dòng)式主軸套筒外圓表面等,都必須具有很高的硬度,以保證其耐磨性。
為了提高主軸組件的耐磨性,應(yīng)該正確地選用主軸和滑動(dòng)軸承的材料及熱處理方法、潤(rùn)滑方式,合理調(diào)整軸承間隙,良好的潤(rùn)滑和可靠的密封。
4.2 主軸組件的布局
主軸組件的設(shè)計(jì),必須保證滿足上述的基本要求,從而從全局出發(fā),考慮主軸組件的布局。
特殊磨頭主軸有前、后兩個(gè)支承和前、中、后三個(gè)支承兩種,以前者較多見。兩支承主軸軸承的配置型式,包括主軸軸承的選型、組合以及布置,主要根據(jù)對(duì)所設(shè)計(jì)主軸組件在轉(zhuǎn)速、承載能力、剛度以及精度等方面的要求,并考慮軸承的供應(yīng)、經(jīng)濟(jì)性等具體情況,加以確定。在選擇時(shí),具體有以下要求:
(1)適應(yīng)剛度和承載能力的要求
主軸軸承選型應(yīng)滿足所要求的剛度和承載能力。徑向載荷較大時(shí),可選用滾子軸承;較小時(shí),可選用球軸承。雙列滾動(dòng)軸承的徑向剛度和承載能力,比單列的大。同一支承中采用多個(gè)軸承的支承剛度和承載能力,比采用單個(gè)軸承大。一般來(lái)說(shuō),前支承的剛度,應(yīng)比后支承的大。因?yàn)榍爸С袆偠葘?duì)主軸組件剛度的影響要比后支承的大。表2-1所示為滾動(dòng)軸承和滑動(dòng)軸承的比較。
表4-1 滾動(dòng)軸承和滑動(dòng)軸承的比較
基本要求
滾動(dòng)軸承
滑動(dòng)軸承
動(dòng)壓軸承
靜壓軸承
旋轉(zhuǎn)精度
精度一般或較差??稍跓o(wú)隙或預(yù)加載荷下工作。精度也可以很高,但制造困難
單油楔軸承一般,多油楔軸承較高
可以很高
剛度
僅與軸承型號(hào)有關(guān),與轉(zhuǎn)速、載荷無(wú)關(guān),預(yù)緊后可提高一些
隨轉(zhuǎn)速和載荷升高而增大
與節(jié)流形式有關(guān),與載荷轉(zhuǎn)速無(wú)關(guān)
承載能力
一般為恒定值,高速時(shí)受材料疲勞強(qiáng)度限制
隨轉(zhuǎn)速增加而增加,高速時(shí)受溫升限制
與油腔相對(duì)壓差有關(guān),不計(jì)動(dòng)壓效應(yīng)時(shí)與速度無(wú)關(guān)
抗振性能
不好,阻尼系數(shù)D=0.029
較好,阻尼系數(shù)D=0.055
很好,阻尼系數(shù)D=0.4
速度性能
高速受疲勞強(qiáng)度和離心力限制,低中速性能較好
中高速性能較好。低速時(shí)形不成油漠,無(wú)承載能力
適應(yīng)于各種轉(zhuǎn)速
摩擦功耗
一般較小,潤(rùn)滑調(diào)整不當(dāng)時(shí)則較大f=0.002~0.008
較小f=0.001~0.08
本身功耗小,但有相當(dāng)大的泵功耗f=0.0005~0.001
噪聲
較大
無(wú)噪聲
本身無(wú)噪聲,泵有噪聲
壽命
受疲勞強(qiáng)度限制
在不頻繁啟動(dòng)時(shí),壽命較長(zhǎng)
本身壽命無(wú)限,但供油系統(tǒng)的壽命有限
(2)適應(yīng)轉(zhuǎn)速要求
由于結(jié)構(gòu)和制造方面的原因,不同型號(hào)和規(guī)格的軸承所允許的最高轉(zhuǎn)速是不同的。軸承的規(guī)格越大,精度等級(jí)越低,允許的最高轉(zhuǎn)速越低。在承受徑向載荷的軸承當(dāng)中,圓柱滾子軸承的極限轉(zhuǎn)速,比圓錐滾子軸承的高。在承受軸向載荷的軸承當(dāng)中,向心推力軸承的極限轉(zhuǎn)速最高;推力球軸承的次之;圓錐滾子軸承的最低,但承載能力與上述次序相反。因此,應(yīng)綜合考慮轉(zhuǎn)速和承載能力兩方面要求來(lái)選擇軸承型式。
(3)適應(yīng)精度的要求
起止推作用的軸承的布置有三種方式:前端定位—止推軸承集中布置在前支承;后端定位—集中布置在后支承;兩端定位—分別布置在前、后支承。
采用前端定位時(shí),主軸受熱變形向后延伸,不影響軸向定位精度,但前支承結(jié)構(gòu)復(fù)雜,調(diào)整軸承間隙較不便,前支承處發(fā)熱量較大;后端定位的特點(diǎn)與前述的相反;兩端定位時(shí),主軸受熱伸長(zhǎng)后,軸承軸向間隙的改變較大,若止推軸承布置在徑向軸承內(nèi)側(cè),主軸可能因熱膨脹而彎曲。
(4)適應(yīng)結(jié)構(gòu)的要求
當(dāng)要求主軸組件在性能上有較高的剛度和一定的承載能力,而在結(jié)構(gòu)上徑向尺寸要緊湊時(shí),則可在一個(gè)支承(尤其是前支承)中配置兩個(gè)或兩個(gè)以上的軸承。
對(duì)于軸間距很小的多主軸特殊磨頭,由于結(jié)構(gòu)限制,宜采用滾針軸承來(lái)承受徑向載荷,用推力球軸承來(lái)承受軸向載荷,并使兩軸承錯(cuò)開排列。
(5)適應(yīng)經(jīng)濟(jì)性要求
確定主軸軸承配置型式,除應(yīng)考慮滿足性能和結(jié)構(gòu)方面要求外,還應(yīng)作經(jīng)濟(jì)性分析,使經(jīng)濟(jì)效果好。
在中速和大載荷情況下,采用圓錐滾子軸承要比采用向心軸承和推力軸承組合配置型式成本低,因?yàn)榍罢吖?jié)省了兩個(gè)軸承,而且箱體工藝性較好。
綜合考慮以上因素,本設(shè)計(jì)的主軸采用前、后支承的兩支承主軸,前支承采用雙列向心短圓柱滾子軸承和推力球軸承的組合,D級(jí)精度;后支承采用圓柱滾子軸承,E級(jí)精度。其中前支承的雙列圓柱滾子軸承,滾子直徑小,數(shù)量多(50—60個(gè)),具有較高的剛度;兩列滾子交錯(cuò)布置,減少了剛度的變化量;外圈無(wú)擋邊,加工方便;軸承內(nèi)孔為錐孔,錐度為1:12,軸向移動(dòng)內(nèi)圈使之徑向變形,調(diào)整徑向間隙和預(yù)緊;黃銅實(shí)體保持架,利于軸承散熱。前支承的總體特點(diǎn)是:主軸靜剛度好,回轉(zhuǎn)精度高,溫升小,徑向間隙可以調(diào)整,易保持主軸精度,但由于前支承結(jié)構(gòu)比較復(fù)雜,前、后支承的溫升不同,熱變形較大,此外,裝配、調(diào)整比較麻煩。
4.3 主軸結(jié)構(gòu)的初步擬定
主軸的結(jié)構(gòu)主要決定于主軸上所安裝的刀具、夾具、傳動(dòng)件、軸承和密封裝置等的類型、數(shù)目、位置和安裝定位的方法,同時(shí)還要考慮主軸加工和裝配的工藝性,一般在特殊磨頭主軸上裝有較多的零件,為了滿足剛度要求和能得到足夠的止推面以及便于裝配,常把主軸設(shè)計(jì)成階梯軸,即軸徑從前軸頸起向后依次遞減。主軸是空心的或者是實(shí)心的,主要取決于特殊磨頭的類型。此次設(shè)計(jì)的主軸,也設(shè)計(jì)成階梯形,同時(shí),在滿足剛度要求的前提下,設(shè)計(jì)成空心軸,以便通過(guò)刀具拉桿。
主軸端部系指主軸前端。它的形狀決定于特殊磨頭的類型、安裝夾具或刀具的形式,并應(yīng)保證夾具或刀具安裝可靠、定位準(zhǔn)確,裝卸方便和能傳遞一定的扭矩。
4.4 主軸的材料與熱處理
主軸材料主要根據(jù)剛度、載荷特點(diǎn)、耐磨性和熱處理變形大小等因素選擇。
主軸的剛度與材料的彈性模量E值有關(guān),鋼的E值較大(2.1×10N/cm左右),所以,主軸材料首先考慮用鋼料。鋼的彈性模量E的數(shù)值和鋼的種類和熱處理方式無(wú)關(guān),即不論是普通鋼或合金鋼,其彈性模量E基本相同。因此在選擇鋼料時(shí)應(yīng)首先選用價(jià)格便宜的中碳鋼(如45鋼),只有在載荷特別重和有較大的沖擊時(shí),或者精密特殊磨頭主軸需要減少熱處理后的變形時(shí),或者軸向移動(dòng)的主軸需要保證其耐磨性時(shí),才考慮選用合金鋼。
當(dāng)主軸軸承采用滾動(dòng)軸承時(shí),軸頸可不淬硬,但為了提高接觸剛度,防止敲碰損傷軸頸的配合表面,不少45鋼主軸軸頸仍進(jìn)行高頻淬火(HRC48~54).有關(guān)45鋼主軸熱處理情況如下表2.2所列:
表4-2 使用滾動(dòng)軸承的45鋼主軸熱處理等參數(shù)
工 作 條 件
使 用 機(jī) 床
材 料 牌 號(hào)
熱 處 理
硬 度
常 用
代 用
輕中負(fù)載
車、鉆、銑、磨床主軸
45
50
調(diào)質(zhì)
HB220~250
輕中負(fù)載局部要求高硬度
磨床的砂輪軸
45
50
高頻淬火
HRC52~58
輕中負(fù)載PV≤40(N·m/cm·s)
車、鉆、銑、磨床的主軸
45
50
淬火回火高頻淬火
HRC42~50
HRC52~58
此次設(shè)計(jì)的特殊磨頭主軸,考慮到主軸材料的選擇原則,選用價(jià)格便宜的中碳鋼(45鋼)。查表2-2中,因工作中承受輕、中負(fù)荷,且要求局部高硬度,故熱處理采用高頻淬火,HRC52~58。
4.5 主軸的技術(shù)要求
主軸的精度直接影響到主軸組件的旋轉(zhuǎn)精度。主軸和軸承、齒輪等零件相連接處的表面幾何形狀誤差和表面粗糙度,關(guān)系到接觸剛度,零件接觸表面形狀愈準(zhǔn)確、表面粗糙度愈低,則受力后的接觸變形愈小,亦即接觸剛度愈高。因此,對(duì)主軸設(shè)計(jì)必須提出一定的技術(shù)要求。
(1)軸頸
此次設(shè)計(jì)的主軸,應(yīng)首先考慮軸頸。支承軸頸是主軸的工作基面、工藝基面和測(cè)量基面。主軸工作時(shí),以軸頸作為工作基面進(jìn)行旋轉(zhuǎn)運(yùn)動(dòng);加工主軸時(shí),為了保證錐孔中心和軸頸中心同軸,一般都以軸頸作為工藝基面來(lái)最后精磨錐孔;在檢查主軸精度時(shí),以軸頸作為測(cè)量基面來(lái)檢查各部分的同軸度和垂直度。采用滾動(dòng)軸承時(shí),軸頸的精度必須與軸承的精度相適應(yīng)。軸頸的表面粗糙度和硬度,將影響其與滾動(dòng)軸承的配合質(zhì)量。
對(duì)于普通精度級(jí)特殊磨頭的主軸,其支承軸頸的尺寸精度為IT5,軸頸的幾何形狀允差(圓度、圓柱度等)通常應(yīng)小于直徑公差的1/4~1/2。
(2)內(nèi)錐孔
內(nèi)錐孔是安裝刀具或頂尖的定位基面。在檢驗(yàn)特殊磨頭精度時(shí),它是代表主軸中心線的基準(zhǔn),用來(lái)檢查主軸與其他部件的相互位置精度,如主軸與導(dǎo)軌的平行度等。由于刀具和頂尖要經(jīng)常裝拆,故內(nèi)錐孔必須耐磨。
錐孔與軸承軸頸的同軸度,一般以錐孔端部及其相距100~300毫米處對(duì)軸頸的徑向跳動(dòng)表示;其形狀誤差用標(biāo)準(zhǔn)檢驗(yàn)錐著色檢查的接觸面積大小來(lái)檢驗(yàn),此乃綜合指標(biāo);還要求一定的表面粗糙度和硬度等。
4.6 主軸直徑的選擇
主軸直徑對(duì)主軸組件剛度的影響很大,直徑越大,主軸本身的變形和軸承變形引起的主軸前端位移越小,即主軸組件的剛度越高。
但主軸前端軸頸直徑D1越大,與之相配的軸承等零件的尺寸越大,要達(dá)到相同的公差則制造越困難,重量也增加。同時(shí),加大直徑還受到軸承所允許的極限轉(zhuǎn)速的限制,甚至為特殊磨頭結(jié)構(gòu)所不允許。
通常,主軸前軸頸直徑D1可根據(jù)傳遞功率,并參考現(xiàn)有同類特殊磨頭的主軸軸頸尺寸確定。查《金屬切削特殊磨頭設(shè)計(jì)》第506頁(yè)表5-12中,幾種常見的通用特殊磨頭鋼質(zhì)主軸前軸頸的直徑D1,可供參考,如下表2-3所示:
特殊磨頭,查上表中對(duì)應(yīng)項(xiàng),初取D1= D2=30。
表4-3 主軸前軸頸直徑D1的選擇
機(jī)床
機(jī)床功率 (千瓦)
1.47~2.5
2.6~3.6
3.7~5.5
5.6~7.3
7.4~11
11~14.7
車床
60~80
70~90
70~105
95~130
110~145
140~165
銑床
50~90
60~90
60~95
75~100
90~105
100~115
外圓磨床
—
50~90
55~70
70~80
75~90
75~100
4.7 主軸前后軸承的選擇
根據(jù)前述關(guān)于軸承的選擇原則,查《金屬切削設(shè)計(jì)簡(jiǎn)明手冊(cè)》第375頁(yè),選取主軸前支承的36206是舊型號(hào),新型號(hào)是7206C,即接觸角為15°的角接觸球軸承。
圖4-6 軸承結(jié)構(gòu)參數(shù)及安裝尺寸
4.8 軸承的選型及校核
滾動(dòng)軸承的選擇包括軸承類型選擇、軸承精度等級(jí)選擇和軸承尺寸選擇。
軸承類型選擇適當(dāng)與否,直接影響軸承壽命以至機(jī)器的工作性能。選擇軸承類型時(shí)應(yīng)當(dāng)分析比較各類軸承的特性,并參照同類機(jī)器中的軸承使用經(jīng)驗(yàn)。
在選擇軸承類型時(shí),首先要考慮載荷的大小、方向以及軸的轉(zhuǎn)速。一般說(shuō)來(lái),球軸承便宜,在載荷較小時(shí),宜優(yōu)先選用。滾子軸承的承載能力比球軸承大,而且能承受沖擊載荷,因此在重載荷或受有振動(dòng)、沖擊載荷時(shí),應(yīng)考慮選用滾子軸承。但要注意滾子軸承對(duì)角偏斜比較敏感。
當(dāng)主要承受徑向載荷時(shí),應(yīng)選用向心軸承。當(dāng)承受軸向載荷而轉(zhuǎn)速不高時(shí),可選用推力軸承;如轉(zhuǎn)速較高,可選用角接觸球軸承。當(dāng)同時(shí)承受徑向裁荷和軸向載荷時(shí),若軸向載荷較小,可選用向心球軸承或接觸角不大的角接觸球軸承;若軸向載荷較大,而轉(zhuǎn)速不高,可選用推力軸承和向心軸承的組合方式,分別承受軸向載荷和徑向載荷;’當(dāng)軸向載荷較大,且轉(zhuǎn)速較高時(shí),則應(yīng)選用接觸角較大的角接觸軸承。
各類軸承適用的轉(zhuǎn)速范圍是不相同的,在機(jī)械設(shè)計(jì)手冊(cè)中列出了各類軸承的極限轉(zhuǎn)速。一般應(yīng)使軸承在低于極限轉(zhuǎn)速下運(yùn)轉(zhuǎn)。向心球軸承、角接觸球軸承和短圓柱痞子軸承的極限轉(zhuǎn)速較高。適用于較高轉(zhuǎn)速場(chǎng)合。推力軸承的極限轉(zhuǎn)速較低.只能用于較低轉(zhuǎn)速場(chǎng)合。
其次,在選擇軸承類型時(shí)還需考慮安裝尺寸限制、裝拆要求,以及軸承的調(diào)心件能和風(fēng)度,一般球軸承外形尺寸較大,滾子軸承較小,滾針軸承的徑向尺寸最小而軸向尺寸較大,此外,不同系列的軸承,其外形尺寸也不相同。
選擇軸承一般應(yīng)根據(jù)機(jī)械的類型、工作條件、可靠性要求及軸承的工作轉(zhuǎn)速n,預(yù)先確定一個(gè)適當(dāng)?shù)氖褂脡勖麹b (用工作小時(shí)表示),再進(jìn)行額定動(dòng)裁荷和額定靜載荷的計(jì)算。
對(duì)于轉(zhuǎn)速較高的軸承(n>10r/min),可按基本額定動(dòng)載荷計(jì)算值選擇軸承,然后校核其額定靜載荷是否滿足要求。當(dāng)軸承可靠性為90%、軸承材料為常規(guī)材料并在常規(guī)條件下運(yùn)轉(zhuǎn)時(shí),取500h作為額定壽命的基準(zhǔn),同時(shí)考慮溫度、振動(dòng)、沖擊等變化,則軸承基本額定動(dòng)載荷可按下式進(jìn)行簡(jiǎn)化計(jì)算。
C——基本額定動(dòng)載荷計(jì)算值,N;
P——當(dāng)量動(dòng)載荷,N;
fh——壽命因數(shù);1
fn——速度因數(shù);0.822
fm——力矩載荷因數(shù),力矩載荷較小時(shí)取1.5,較大時(shí)取2;
fd——沖擊載荷因數(shù);1.5
fT——溫度因數(shù);1
CT——軸承尺寸及性能表中所列徑向基本額定動(dòng)載荷,N;
查文獻(xiàn)[3]中的表6-2-8至6-2-12,得,fh=1;fn=0.822;fm=1.5;fd=1.5;fT=1。
在本輸送裝置中,可以假設(shè)軸承只承受徑向載荷,則當(dāng)量動(dòng)載荷為:
P=XFr+YFa
查文獻(xiàn)[3]的表6-2-18,得,X=1,Y=0;
所以,P=Fr=1128N。由以上可得:
本輸送機(jī)中的軸承承受的載荷多為徑向載荷,所以選取深溝球軸承,查文獻(xiàn)[6]的附表6-1,并考慮軸的外徑,選取軸承6305-RZ,其具體參數(shù)為:內(nèi)徑d=25mm,外徑D=62mm,基本額定載荷,基本額定靜載荷,極限速度為10000r/min,質(zhì)量為0.219kg。
然后校核該軸承的額定靜載荷。額定靜載荷的計(jì)算公式為:
式中:
——基本額定靜載荷計(jì)算值,N;
——當(dāng)量靜載荷,N;
——安全因數(shù)
——軸承尺寸及性能表中所列徑向基本額定靜載荷,N。
查文獻(xiàn)[3]的表6-2-14知,對(duì)于深溝球軸承,其當(dāng)量靜載荷等于徑向載荷。
查文獻(xiàn)[3]的表6-2-14知,安全系數(shù)
則軸承的基本額定靜載荷為:
由上式可知,選取的軸承符合要求。
4.9 主軸前端懸伸量
主軸前端懸伸量a指的是主軸前支承支反力的作用點(diǎn)到主軸前端受力作用點(diǎn)之間的距離,它對(duì)主軸組件剛度的影響較大。懸伸量越小,主軸組件剛度越好。
主軸前端懸伸量a取決于主軸端部的結(jié)構(gòu)形狀及尺寸,一般應(yīng)按標(biāo)準(zhǔn)選取,有時(shí)為了提高主軸剛度或定心精度,也可不按標(biāo)準(zhǔn)取。
另外,主軸前端懸伸量a還與前支承中軸承的類型及組合型式、工件或夾具的夾緊方式以及前支承的潤(rùn)滑與密封裝置的結(jié)構(gòu)尺寸等有關(guān)。
因此,在滿足結(jié)構(gòu)要求的前提下,應(yīng)盡可能減小懸伸量a,以利于提高主軸組件的剛度。
初算時(shí),可查《金屬切削特殊磨頭設(shè)計(jì)》第158頁(yè),如下表2-4所示:
表4-4 主軸的懸伸量與直徑之比
類型
機(jī) 床 和 主 軸 的 類 型
a/ D1
Ⅰ
通用和精密車床,自動(dòng)車床和短主軸端銑床,用滾動(dòng)軸承支承,適用于高精度和普通精度要求
0.6~1.5
Ⅱ
中等長(zhǎng)度和較長(zhǎng)主軸端的車床和銑床,懸伸量不太長(zhǎng)(不是細(xì)長(zhǎng))的精密鏜床和內(nèi)圓磨,用滾動(dòng)和滑動(dòng)軸承支承,適用于絕大部分普通生產(chǎn)的要求
1.25~2.5
Ⅲ
孔加工特殊磨頭,專用加工細(xì)長(zhǎng)深孔的特殊磨頭,由加工技術(shù)決定需要有長(zhǎng)的懸伸刀桿或