2019屆高三數(shù)學(xué)上學(xué)期期中試題 文(含解析) (IV).doc
《2019屆高三數(shù)學(xué)上學(xué)期期中試題 文(含解析) (IV).doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019屆高三數(shù)學(xué)上學(xué)期期中試題 文(含解析) (IV).doc(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019屆高三數(shù)學(xué)上學(xué)期期中試題 文(含解析) (IV) 參考公式和數(shù)表: 1、獨(dú)立性檢驗(yàn)可信度表: P() 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.83 2、獨(dú)立性檢驗(yàn)臨界值表及參考公式: 3、線(xiàn)性回歸方程:, 第I卷 選擇題 一、選擇題(本大題共有12小題,每小題5分,共60分,每一小題只有一個(gè)選項(xiàng)正確) 1. 進(jìn)入互聯(lián)網(wǎng)時(shí)代,發(fā)電子郵件是不可少的,一般而言,發(fā)電子郵件要分成以下幾個(gè)步驟:a.打開(kāi)電子郵箱;b.輸入發(fā)送地址;c.輸入主題;d.輸入信件內(nèi)容;e.點(diǎn)擊“寫(xiě)郵件”;f.點(diǎn)擊“發(fā)送郵件”,則正確的流程是 A. a→b→c→d→e→f B. a→c→d→f→e→b C. a→e→b→c→d→f D. b→a→c→d→f→e 【答案】C 【解析】發(fā)電子郵件要分成以下幾個(gè)步驟:a.打開(kāi)電子郵箱;e.點(diǎn)擊“寫(xiě)郵件”;b.輸入發(fā)送地址;c.輸入主題;d.輸入信件內(nèi)容; f.點(diǎn)擊“發(fā)送郵件”. 故選C. 2. 在等差數(shù)列中,如果,那么數(shù)列的前項(xiàng)的和是 A. 54 B. 81 C. D. 【答案】C 【解析】在等差數(shù)列中,, 又,所以, 數(shù)列的前9項(xiàng)的和 故選C. 3. 設(shè),是虛數(shù)單位,則“”是“復(fù)數(shù)為純虛數(shù)”的 A. 充分不必要條 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件 【答案】C 【解析】由,得,. 而由,得. 所以“”是“復(fù)數(shù)為純數(shù)”的充要條件. 故選C. A. B. C. D. 【答案】A 【解析】由函數(shù)的圖象可得最大值為4,且在一周期內(nèi)先出現(xiàn)最小值,所以, 觀察圖象可得函數(shù)的周期T=16,, 若,則 當(dāng)時(shí),, ∵; 當(dāng) 又函數(shù)的圖象過(guò)(2,﹣4)代入可得, ∴, ∵, ∴函數(shù)的表達(dá)式. 故選A. 5. 已知,為直線(xiàn),為平面,下列結(jié)論正確的是 A. 若 ,則 B. 若 ,則 C. 若 ,則 D. 若 ,則 【答案】B 對(duì)于選項(xiàng)B,由垂直于同一平面的兩條直線(xiàn)平行可知,選項(xiàng)B正確; 對(duì)于選項(xiàng)C,平行與同一平面的兩條直線(xiàn)可以平行,也可以相交或異面,所以錯(cuò)誤;. 當(dāng),有或或,所以錯(cuò)誤. 故選B. 6. 已知,,,則、、大小關(guān)系是 A. << B. << C. << D. << 【答案】D 【解析】,, 故選D. 7. 把邊長(zhǎng)為的正方形沿對(duì)角線(xiàn)折起,使得平面⊥平面,形成三棱錐的正視圖與俯視圖如圖所示,則側(cè)視圖的面積為( ) A. B. C. D. 【答案】C 【解析】 取BD的中點(diǎn)E,連結(jié)CE,AE, ∵平面ABD⊥平面CBD, ∴CE⊥AE, ∴三角形直角△CEA是三棱錐的側(cè)視圖, ∵BD=,∴CE=AE=, ∴△CEA的面積S==, 故選:C. 8. 已知命題:?,;命題:?,.若、都為假命題,則實(shí)數(shù)的取值范圍是( ) A. [1,+∞) B. (-∞,-1] C. (-∞,-2] D. [-1,1] 【答案】A 【解析】p,q都是假命題.由p:?,為假命題, 得?,,∴. 由q:?,為假,得?, ∴,得或. ∴. 故選A. 9. 已知為數(shù)列的前項(xiàng)和,且,則數(shù)列的通項(xiàng)公式為( ) A. B. C. D. 【答案】B 當(dāng)時(shí),; 當(dāng)時(shí),, 所以數(shù)列的通項(xiàng)公式為. 故選B. 10. 設(shè)函數(shù),是由軸和曲線(xiàn)及該曲線(xiàn)在點(diǎn)處的切線(xiàn)所圍成的封閉區(qū)域,則在上的最大值為( ) A. B. C. D. 【答案】D 【解析】 先求出曲線(xiàn)在點(diǎn)(1,0)處的切線(xiàn),然后畫(huà)出區(qū)域D,利用線(xiàn)性規(guī)劃的方法求出目標(biāo)函數(shù)z的最大值即可:,, ∴曲線(xiàn)及該曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為。 ∴由軸和曲線(xiàn)及圍成的封閉區(qū)域?yàn)槿切巍? 在點(diǎn)處取得最大值1。 故選D. 點(diǎn)睛:線(xiàn)性規(guī)劃的實(shí)質(zhì)是把代數(shù)問(wèn)題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一、準(zhǔn)確無(wú)誤地作出可行域;二、畫(huà)標(biāo)準(zhǔn)函數(shù)所對(duì)應(yīng)的直線(xiàn)時(shí),要注意與約束條件中的直線(xiàn)的斜率進(jìn)行比較,避免出錯(cuò);三、一般情況下,目標(biāo)函數(shù)的最大或最小會(huì)在可行域的端點(diǎn)或邊界上取得. 11. 若,則為( ) A. B. C. D. 【答案】C 【解析】∵,,∴. 又∵,,∴, ∴ 又∵,∴ 故選C. 點(diǎn)睛:在三角化簡(jiǎn)求值類(lèi)題目中,常??肌敖o值求值”,“給值求角”的問(wèn)題,遇見(jiàn)這類(lèi)題目一般的方法為——配湊角:即將要求的式子通過(guò)配湊,得到與已知角的等量關(guān)系,進(jìn)而用兩角和差的公式展開(kāi)求值即可.在求解過(guò)程中注意結(jié)合角的范圍來(lái)確定正余弦的正負(fù)! 12. 已知是所在平面上一點(diǎn),滿(mǎn)足,則點(diǎn)( ) A. 在過(guò)點(diǎn)與垂直的直線(xiàn)上 B. 在的平分線(xiàn)所在直線(xiàn)上 C. 在過(guò)點(diǎn)邊的中線(xiàn)所在直線(xiàn)上 D. 以上都不對(duì) 【答案】A 【解析】由得,, 故選A. 點(diǎn)睛:(1)向量的加法運(yùn)算,有兩個(gè)運(yùn)算法則,一個(gè)是三角形法則,一個(gè)是平行四邊形法則,三角形法則是要求首尾相接,起點(diǎn)指向終點(diǎn)即可;平行四邊形法則要求兩向量共起點(diǎn); (2)向量的減法運(yùn)算要求,共起點(diǎn),連終點(diǎn),箭頭指被減. 第II卷 非選擇題 二、填空題(本大題共有4小題,每小題5分,共20分,請(qǐng)將正確答案填入相應(yīng)的位置) 13. 某冷飲店為了解氣溫對(duì)其營(yíng)業(yè)額的影響,隨機(jī)記錄了該店1月份銷(xiāo)售淡季中的日營(yíng)業(yè)額(單位:百元)與該地當(dāng)日最低氣溫(單位:℃)的數(shù)據(jù),如表所示: 由圖表數(shù)據(jù)可知: =﹣0.7,則線(xiàn)性回歸方程為_(kāi)_______________. 【答案】 【解析】由, . 線(xiàn)性回歸方程為. 14. 在平行四邊形中,與交于點(diǎn),是線(xiàn)段的中點(diǎn),的延長(zhǎng)線(xiàn)與交于點(diǎn). 若,,則等于_______(用,表示). 【答案】 【解析】 ∵,,∴. ∵E是OD的中點(diǎn),∴=,∴DF=AB . ∴, ∴ , 點(diǎn)睛:(1)向量的加法運(yùn)算,有兩個(gè)運(yùn)算法則,一個(gè)是三角形法則,一個(gè)是平行四邊形法則,三角形法則是要求首尾相接,起點(diǎn)指向終點(diǎn)即可;平行四邊形法則要求兩向量共起點(diǎn); (2)向量的減法運(yùn)算要求,共起點(diǎn),連終點(diǎn),箭頭指被減. 15. 已知,觀察下列算式: ;;… 若,則的值為_(kāi)____________________. 【答案】 【解析】∵, ∴;…; , 則. 16. 已知棱長(zhǎng)為的正方體中,,,分別是線(xiàn)段、、 的中點(diǎn),又、分別在線(xiàn)段、上,且. 設(shè)平面∩平面,現(xiàn)有下列結(jié)論: ①∥平面; ②⊥; ③直線(xiàn)與平面不垂直; ④當(dāng)變化時(shí),不是定直線(xiàn). 其中成立的結(jié)論是________.(寫(xiě)出所有成立結(jié)論的序號(hào)) 【答案】①②③ 【解析】 連接BD,B1D1,∵A1P=A1Q=x, ∴PQ∥B1D1∥BD∥EF,易證PQ∥平面MEF, 又平面MEF∩平面MPQ=,∴PQ∥,∥EF, ∴∥平面,故①成立; 又EF⊥AC,∴⊥AC,故②成立; ∵∥EF∥BD,∴易知直線(xiàn)與平面BCC1B1不垂直, 故③成立; 當(dāng)變化時(shí),是過(guò)點(diǎn)M且與直線(xiàn)EF平行的定直線(xiàn),故④不成立. 答案為:①②③. 三、 解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟,第17至21題為必考題,每個(gè)試題考生都必須作答。第22、23題為選考題,考生根據(jù)要求作答。 (一)必考題:共60分。 17. 已知等差數(shù)列中,,. (1)求數(shù)列的通項(xiàng)公式; (2)若等比數(shù)列的前n項(xiàng)和為,,,求的最小正整數(shù). 【答案】(1);(2)5. 【解析】試題分析:(1)設(shè)等差數(shù)列的公差為,由得公差,即可得通項(xiàng)公式; (2)求出等比數(shù)列的公比,進(jìn)而得前n項(xiàng)和,解不等式即可. 試題解析: (1)設(shè)等差數(shù)列的公差為,. . (2) ∵,,∴ ∴ ∵, ∴ ∴ 最小正整數(shù)為. 18. 如圖,四棱錐中,底面為矩形,⊥平面,為的中點(diǎn). (Ⅰ)證明:∥平面; (Ⅱ)設(shè),,三棱錐的體積,求到平面的距離. 【答案】(Ⅰ)見(jiàn)解析;(Ⅱ). 【解析】試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出A到平面PBD的距離 試題解析:(I)設(shè)BD交AC于點(diǎn)O,連結(jié)EO。 因?yàn)锳BCD為矩形,所以O(shè)為BD的中點(diǎn)。 又E為PD的中點(diǎn),所以EO∥PB 又EO平面AEC,PB平面AEC 所以PB∥平面AEC。 (II) 由,可得. 作交于。 由題設(shè)易知,所以 故, 又所以到平面的距離為 法2:等體積法 由,可得. 由題設(shè)易知,得BC 假設(shè)到平面的距離為d, 又因?yàn)镻B= 所以 又因?yàn)?或), , 所以 考點(diǎn):線(xiàn)面平行的判定及點(diǎn)到面的距離 19. 在中,角,,所對(duì)的邊為,,,, ,,若 (1)求函數(shù)的圖象的對(duì)稱(chēng)點(diǎn); (2)若,且的面積為,求的周長(zhǎng). 【答案】(1);(2)20. 【解析】試題分析:(1)利用向量數(shù)量積的坐標(biāo)運(yùn)算,結(jié)合兩角和的正余弦公式及二倍角公式可得解析式,令即可得對(duì)稱(chēng)中心; (2)由三角形的面積公式及余弦定理即可得周長(zhǎng). 試題解析: 由得,, (1) 由得, 令 ∴ 函數(shù)的圖象的對(duì)稱(chēng)點(diǎn)為 (2) ∴. 20. 某公司為了變廢為寶,節(jié)約資源,新上了一個(gè)從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測(cè)算,該項(xiàng)目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:,且每處理一噸生活垃圾,可得到能利用的生物柴油價(jià)值為元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼. (1)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損? (2)該項(xiàng)目每月處理量為多少?lài)崟r(shí),才能使每噸的平均處理成本最低? 【答案】(1)政府每月至少需要補(bǔ)貼元才能使該項(xiàng)目不虧損;(2)當(dāng)每月處理量為400噸時(shí),才能使每噸的平均處理成本最低. 【解析】試題分析:(1)先確定該項(xiàng)目獲利的函數(shù),再利用配方法確定不會(huì)獲利,從而可求政府每月至少需要補(bǔ)貼的費(fèi)用; (2)確定食品殘?jiān)拿繃嵉钠骄幚沓杀竞瘮?shù),分別求出分段函數(shù)的最小值,即可求得結(jié)論. 試題解析: (1)當(dāng)時(shí),該項(xiàng)目獲利為,則 ∴當(dāng)時(shí),,因此,該項(xiàng)目不會(huì)獲利 當(dāng)時(shí),取得最大值, 所以政府每月至少需要補(bǔ)貼元才能使該項(xiàng)目不虧損; (2)由題意可知,生活垃圾每噸的平均處理成本為: 當(dāng)時(shí), 所以當(dāng)時(shí),取得最小值240; 當(dāng)時(shí), 當(dāng)且僅當(dāng),即時(shí),取得最小值200 因?yàn)?40>200,所以當(dāng)每月處理量為400噸時(shí),才能使每噸的平均處理成本最低. 21. 設(shè)函數(shù),的圖象在點(diǎn)處的切線(xiàn)與直線(xiàn)平行. (1)求的值; (2)若函數(shù) ,且在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍. 【答案】(1);(2). 【解析】試題分析:(1)由題意知,曲線(xiàn)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線(xiàn)斜率為3,求導(dǎo)數(shù),代入計(jì)算,即可得出結(jié)論; (2)求導(dǎo)數(shù),分類(lèi)討論,即可求實(shí)數(shù)a的取值范圍. 試題解析: (1)由題意知,曲線(xiàn)的圖象在點(diǎn)處的切線(xiàn)斜率為3, 所以,又, 即,所以. (2)由(1)知, 所以, ①若在區(qū)間(0,+∞)上為單調(diào)遞減函數(shù),則在(0,+∞)上恒成立, 即,所以. 令,則, 由,得,由,得, 故在(0,1]上是減函數(shù),在[1,+∞)上是增函數(shù), 則,無(wú)最大值,在(0,+∞)上不恒成立, 故在(0,+∞)不可能是單調(diào)減函數(shù) ②若在(0,+∞)上為單調(diào)遞增函數(shù),則在(0,+∞)上恒成立, 即,所以, 由前面推理知,的最小值為,∴, 故a的取值范圍是. 點(diǎn)睛:已知函數(shù)單調(diào)性求參即可轉(zhuǎn)化為導(dǎo)數(shù)恒大于等于或恒小于等于0問(wèn)題,即為恒成立問(wèn)題. (1)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問(wèn)題; (2)若就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為 ,若恒成立; (3)若 恒成立,可轉(zhuǎn)化為 (二)選考題:共10分。請(qǐng)考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分。 [選修4-4:坐標(biāo)系與參數(shù)方程] 22. 在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為:. (1)把直線(xiàn)的參數(shù)方程化為極坐標(biāo)方程,把曲線(xiàn)的極坐標(biāo)方程化為普通方程; (2)求直線(xiàn)與曲線(xiàn)交點(diǎn)的極坐標(biāo)(≥0,0≤). 【答案】(1)直線(xiàn)l:,曲線(xiàn)C:;(2),. 【解析】試題分析:(1)將直線(xiàn)參數(shù)方程中的消去得普通方程,利用即可得極坐標(biāo)方程,利用可得曲線(xiàn)的普通方程; (2)聯(lián)立得交點(diǎn)的直角坐標(biāo),進(jìn)而轉(zhuǎn)化為極坐標(biāo)即可. 試題解析: (1)直線(xiàn)l的參數(shù)方程(為參數(shù)),消去參數(shù)化為, 把代入可得:, 由曲線(xiàn)C的極坐標(biāo)方程為:, 變?yōu)?,化? (2)聯(lián)立,解得或, ∴直線(xiàn)l與曲線(xiàn)C交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)為,. 點(diǎn)睛:化參數(shù)方程為普通方程的關(guān)鍵是消參,可以利用加減消元、平方消元、代入法等等;在極坐標(biāo)方程與參數(shù)方程的條件下求解直線(xiàn)與圓的位置關(guān)系問(wèn)題時(shí),通常將極坐標(biāo)方程化為直角坐標(biāo)方程,參數(shù)方程化為普通方程來(lái)解決. [選修4-5:不等式選講] 23. (1)解不等式≥的解集. (2) 關(guān)于的不等式的解集是,求實(shí)數(shù)的取值范圍. 【答案】(1){x|x≤-3或x≥2};(2). 【解析】試題分析:(1)分段去絕對(duì)值求解不等式即可 (2)由于二次項(xiàng)系數(shù)含有參數(shù),故需對(duì)其進(jìn)行討論.對(duì)于二次項(xiàng)系數(shù)不為0時(shí),借助于相應(yīng)二次函數(shù)的特征,可建立不等式組,從而求出實(shí)數(shù)m的取值范圍. 試題解析: (1)當(dāng)x<-2時(shí),不等式等價(jià)于-(x-1)-(x+2)≥5,解得x≤-3; 當(dāng)-2≤x<1時(shí),不等式等價(jià)于-(x-1)+(x+2)≥5,即3≥5,無(wú)解; 當(dāng)x≥1時(shí),不等式等價(jià)于x-1+x+2≥5,解得x≥2. 綜上,不等式的解集為{x|x≤-3或x≥2}. (2)①當(dāng),即或時(shí),要使原不等式的解集為R,則 ②當(dāng)時(shí),要使原不等式的解集為,則有: 綜合(1)(2)的的取值范圍為.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019屆高三數(shù)學(xué)上學(xué)期期中試題 文含解析 IV 2019 屆高三 數(shù)學(xué) 上學(xué) 期期 試題 解析 IV
鏈接地址:http://ioszen.com/p-4329052.html