2018年4月中考數(shù)學模擬試題帶答案
《2018年4月中考數(shù)學模擬試題帶答案》由會員分享,可在線閱讀,更多相關《2018年4月中考數(shù)學模擬試題帶答案(18頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2018 年 4 月中考數(shù)學模擬試題帶答案一.選擇題(共 12 小題,滿分 36 分)1.下列說法正確的是( )A.﹣1 的相反數(shù)是﹣1 B.﹣1 的倒數(shù)是 1C.1 的算術平方根是 1 D. 1 的立方根是±12.由 4 個相同的小立方體搭成的幾何體如圖所示,則它的主視圖是( )A. B. C. D. 3.如圖,直線 AB∥CD ,∠C=44°,∠E 為直角,則∠1 等于( )A.132° B.134° C.136° D. 138° 4.如圖,將矩形 ABCD 沿 EM 折疊,使頂點 B 恰好落在 CD 邊的中點 N 上.若 AB=6, AD=9,則五邊形ABMND 的周長為( )A.28 B. 26 C. 25 D.22 5.下列計算正確的是( )A.2a2﹣ a2=1 B. (a+b)2=a2+b2 C. (3b3 )2=6b6 D. (﹣a)5÷( ﹣a )3=a2 6.不等式組 的解集在數(shù)軸上表示為( )A. B. C. D. 7.下列關于概率的描述屬于“等可能性事件”的是( )A.交通信號燈有“紅、綠、黃” 三種顏色,它們發(fā)生的概率 B.擲一枚圖釘,落地后釘尖“朝上 ”或“朝下”的概率 C.小亮在沿著“ 直角三角形”三邊的小路上散步,他出現(xiàn)在各邊上的概率 D.小明用隨機抽簽的方式選擇以上三種答案,則A、B、C 被選中的概率 8.已知方程 2x2﹣x﹣3=0 的兩根為 x1,x2,那么 + =( )A.﹣ B. C.3 D.﹣3 9.上周周末放學,小華的媽媽來學校門口接他回家,小華離開教室后不遠便發(fā)現(xiàn)把文具盒遺忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并與班主任交流了一下周末計劃才離開,為了不讓媽媽久等,小華快步跑到學校門口,則小華離學校門口的距離 y 與時間 t 之間的函數(shù)關系的大致圖象是( )A. B. C. D. 10.如圖,點 B,C ,D 在⊙O 上,若∠BCD=130°,則∠BOD 的度數(shù)是( )A.50 ° B.60 ° C.80 ° D.100° 11.如圖,在△ABC 中,AB=AC ,AE 平分∠BAC,DE垂直平分 AB,連接 CE,∠B=70°.則∠BCE 的度數(shù)為( )A.55 ° B.50 ° C.40 ° D.35° 12.將拋物線 y=2x2 向左平移 3 個單位得到的拋物線的解析式是( )A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2 D. y=2(x ﹣3 )2 二.填空題(共 6 小題,滿分 18 分,每小題 3 分)13.方程組 的解滿足方程 x+y﹣ a=0,那么 a 的值是 .14.現(xiàn)在網(wǎng)購越來越多地成為人們的一種消費方式,剛剛過去的 2015 年的“雙 11”網(wǎng)上促銷活動中,天貓和淘寶的支付交易額突破 67000000000 元,將67000000000 元用科學記數(shù)法表示為 .15.唐老師為了了解學生的期末數(shù)學成績,在班級隨機抽查了 10 名學生的成績,其統(tǒng)計數(shù)據(jù)如下表:分數(shù)(單位:分) 100 90 80 70 60人數(shù) 1 4 2 1 2則這 10 名學生的數(shù)學成績的中位數(shù)是 分.16.按一定順序排列的一列數(shù)叫做數(shù)列,如數(shù)列: , , , ,…,則這個數(shù)列前 2018 個數(shù)的和為 .17.正比例函數(shù) y=k1x 的圖象與反比例函數(shù) y= 的圖象相交于 A、B 兩點,其中點 A 的橫坐標為 2,當y1<y2 時,x 的取值范圍是 .18.如圖所示,D、E 分別是△ABC 的邊 AB、BC 上的點,DE∥AC,若 S△BDE:S △CDE=1:3,則 S△BDE:S 四邊形 DECA 的值為 .三.解答題(共 2 小題,滿分 12 分,每小題 6 分)19. ( 6 分)計算:( )﹣2﹣ +( ﹣4)0 ﹣ cos45°.20. ( 6 分)化簡求值:( + )÷ ,其中 x=3.四.解答題(共 2 小題,滿分 16 分,每小題 8 分)21. ( 8 分)網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關注,有關部門在全國范圍內對 12﹣35 歲的網(wǎng)癮人群進行了簡單的隨機抽樣調查,繪制出以下兩幅統(tǒng)計圖.請根據(jù)圖中的信息,回答下列問題 :(1 )這次抽樣調查中共調查了 人;(2 )請補全條形統(tǒng)計圖;(3 )扇形統(tǒng)計圖中 18﹣23 歲部分的圓心角的度數(shù)是 ;(4 )據(jù)報道,目前我國 12﹣35 歲網(wǎng)癮人數(shù)約為2000 萬,請估計其中 12﹣23 歲的人數(shù).22. ( 8 分)如圖,大樓底右側有一障礙物,在障礙物的旁邊有一幢 小樓 DE,在小樓的頂端 D 處測得障礙物邊緣點 C 的俯角為 30°,測得大樓頂端 A 的仰角為 45°(點 B,C ,E 在同一水平直線上) .已知AB=80m, DE=10m,求障礙物 B, C 兩點間的距離. (結果保留根號)五.解答題(共 2 小題,滿分 18 分,每小題 9 分)23. ( 9 分)某校為了準備“迎新活動 ”,用 700 元購買了甲、乙兩種小禮品 260 個,其中 購買甲種禮品比乙種禮品少用了 100 元.(1 )購買乙種禮品花了 元;(2 )如果甲種禮品的單價比乙種禮品的單價高20%,求乙種禮品的單價. (列分式方程解應用題)24. ( 9 分)如圖,已知?ABCD 中,O 是 CD 的中點,連接 AO 并延長,交 BC 的延長線于 E.(1 )求證:△AOD≌△EOC ;(2 )連接 AC、DE ,當∠B= ∠AEB= 時,四邊形 ACED 是正方形,請說明理由.六.解答題 (共 2 小題,滿分 10 分)25. ( 10 分)如圖,在△ABC 中,以 AB 為 直徑作⊙O 交 BC 于點 D,∠DAC=∠B.(1 )求證:AC 是⊙O 的切線;(2 )點 E 是 AB 上一點,若∠BCE=∠B,tan∠B= ,⊙O 的半徑是 4,求 EC 的長.26.如圖,已知拋物線 y=x2+bx+c 的圖象與 x 軸的一個交點為 B(4,0) ,另一個交點為 A,且與 y 軸交于點 C(0,4) .(1 )求直線 BC 與拋物線的解析式;(2 )若點 M 是拋物線在 x 軸下方圖象上的一動點,過點 M 作 MN∥y 軸交直線 BC 于點 N,當 MN 的值最大時,求△BMN 的周長.(3 )在(2)的條件下,MN 取得最大值時,若點 P是拋物線在 x 軸下方圖象上任意一點,以 BC 為邊作平行四邊形 CBPQ,設平行四邊形 CBPQ 的面積為S1, △ABN 的面積為 S2,且 S1=4S2,求點 P 的坐標.參考答案一.選擇題1. C2. A.3. B.4. A.5. D.6. A.7. D.8. A.9. B.10. D.11. B.12. C.二.填空題13.【解答】解: ,把①代入②得:6﹣4y+y=6,解得:y=0,把 y=0 代入①得:x=3,把 x=3,y=0 代入 x+y﹣a=0 中得:3﹣a=0 ,解得:a=3,故答案為:314.【解答】解:67 000 000 000=6.7×1010,故答案為:6.7× 1010.15.【解答】解:這組數(shù)據(jù)按照從小到大的順序排列為:60, 60, 70,80, 80,90,90,90,90,100 ,則中位數(shù)為: =85.故答案為:85.16.【解答】 解:由數(shù)列知第 n 個數(shù)為 ,則前 2018 個數(shù)的和為 + + + +…+ = + + + +…+ =1﹣ + ﹣ + ﹣ + ﹣ +…+ ﹣ =1﹣ = ,故答案為: .17.【解答】解:∵正比例函數(shù) y=k1x 的圖象與反比例函數(shù) y= 的圖象相交于 A、B 兩點∴A,B 兩點坐標關于原點對稱∴B 點的橫坐標為﹣2∵y1<y2∴在第一和第三象限,正比例函數(shù) y=k1x 的圖象在反比例函數(shù) y= 的圖象的下方∴x< ﹣2 或 0<x<218.【解答】解:∵S△BDE :S△CDE=1:3 ,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA ,∴S△BDE:S△BCA=( )2= 1:16,∴S△BDE:S 四邊形 DECA=1:15,故答案為:1:15.三.解答題(共 2 小題,滿分 12 分,每小題 6 分)19.【解答】解:原式=4﹣3+1﹣ × =2﹣ 1=1.20.【解答】解:( + )÷ = = = = ,當 x=3 時,原式= .四.解答題(共 2 小題,滿分 16 分,每小題 8 分)21.【解答】解:(1)這次抽樣調查中共調查了330÷22%=1500(人) ;(2 )12 ﹣17 歲的人數(shù)為1500﹣450﹣420 ﹣ 330=300(人)補充完整,如圖 ;(3 )扇形統(tǒng)計圖中 18﹣23 歲部分的圓心角的度數(shù)是 ×360°=108°;(4 )其中 12﹣23 歲的人數(shù) 2000×50%=1000(萬人).22.【解答】解:過點 D 作 DF⊥AB 于點 F,過點 C 作CH⊥DF 于點 H.則 DE=BF=CH=10m,在 Rt△ADF 中,AF=AB﹣BF=70m,∠ADF=45 °,∴DF=AF=70m.在 Rt△CDE 中,DE=10m,∠DCE=30 °,∴CE= = =10 (m) ,∴BC=BE﹣CE= ( 70﹣10 )m.答:障礙物 B,C 兩點間的距離為(70﹣10 )m.五.解答題(共 2 小題,滿分 18 分,每小題 9 分)23.【解答】解:(1)設買甲種禮品花了 x 元,則買乙種禮品花了(x+100)個,根據(jù)題意,得:x+x+100=700,解得:x=300 ,所以買乙種禮品花了 400 元,故答案為:400;(2 )設乙種禮品的單價為 a 元,則甲種禮品的單價為(1+20% )a 元,根據(jù)題意,得: + =260,解得:a=2.5,經(jīng)檢驗:a=2.5 是原分式方程的解,答:乙種禮品的單價為 2.5 元/ 個.24.【解答】 (1)證明:∵四邊形 ABCD 是平行四邊形,∴AD∥BC,∴∠ADC=∠DCE,在△AOD 和△EOC 中,,∴△AOD≌△EOC(ASA) ;(2 )解:當∠B=∠AEB=45 °時,四邊形 ACED 是正方形,理由:∵∠B=∠AEB=45°,∴AB= AE,∵△AOD≌△EOC,∴AD=EC,∠DAE=∠AEC=45°,又∵AD∥EC,∴四邊形 ACED 是平行四邊形,則 AD=BC=EC,∴AC⊥EC,∵△ABE 是等腰直角三角形,∴AC=EC,∠ACE=90°,∴平行四邊形 ACED 是正方形.故答案為:45°.六.解答題(共 2 小題,滿分 10 分)25.【解答】 (1)證明:∵AB 是直徑,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC 是⊙O 的切線.(2 )解:∵∠BCE=∠B,∴EC=EB,設 EC=EB=x,在 Rt△ABC 中,tan∠B= = ,AB=8,∴AC=4,在 Rt△AEC 中,∵ EC2=AE2+AC2,∴x2= (8 ﹣x)2+42,解得 x=5,∴CE=5.26.【解答】解:(1)設直線 BC 的解析式為 y=mx+n,將 B(4,0) ,C( 0,4)兩點的坐標代入,得, ,∴ 所以直線 BC 的解析式為 y=﹣x+4 ;將 B(4,0) ,C( 0,4)兩點的坐標代入y=x2+bx+c,得, ,∴ 所以拋物線的解析式為 y=x2﹣5x+4;(2 )如圖 1,設 M(x, x2﹣5x+4) (1<x<4) ,則 N(x,﹣x+4) ,∵MN=(﹣x+4)﹣(x2 ﹣5x+4)=﹣x2+4x=﹣(x﹣ 2)2+4 ,∴當 x=2 時,MN 有最大值 4;∵MN 取得最大值時,x=2,∴﹣x+4=﹣2+4=2,即 N(2,2) .x2﹣5x+4=4﹣5×2+4= ﹣2,即 M(2 ,﹣2) ,∵B(4.0)可得 BN=2 ,BM=2 ∴△BMN 的周長=4+2 +2 =4+4 (3 )令 y=0,解方程 x2﹣5x+4=0,得 x=1 或 4,∴A(1 , 0) ,B(4,0) ,∴AB=4﹣1=3,∴△ABN 的面積 S2=×3×2=3,∴平行四邊形 CBPQ 的面積 S1=4S2=12.如圖 2,設平行四邊形 CBPQ 的邊 BC 上的高為 BD,則BC⊥BD .∵BC=4 ,∴BC?BD=12,∴BD= .過點 D 作直線 BC 的平行線,交拋物線與點 P,交 x軸于點 E,在直線 DE 上截取 PQ=BC,連接 CQ,則四邊形 CBPQ 為平行四邊形.∵BC⊥BD,∠OBC= 45°,∴∠EBD=45 °,∴△EBD 為等腰直角三角形,由勾股定理可得 BE= BD=3,∵B(4,0) ,∴E(1 ,0) ,設直線 PQ 的解析式為 y=﹣x+t ,將 E(1 ,0) ,代入,得﹣1+t=0,解得 t=1∴直線 PQ 的解析式為 y=﹣x+1.解方程組, ,得, 或 ,∵點 P 是拋物線在 x 軸下方圖象上任意一點,∴點 P 的坐標為 P(3 ,﹣2)- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2018 中考 數(shù)學模擬 試題 答案
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-459170.html