鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計11.緒論1.1 本課題的提出和研究意義機器人是傳統(tǒng)的機構(gòu)學(xué)與近代電子技術(shù)相結(jié)合的產(chǎn)物,是計算機科學(xué)、控制論、機構(gòu)學(xué)、信息科學(xué)和傳感技術(shù)等多學(xué)科綜合性高科技產(chǎn)物,它是一種仿人操作、高速運行、重復(fù)操作和精度較高的自動化設(shè)備。它是機構(gòu)學(xué)、運動學(xué)、控制理論等學(xué)科發(fā)展水平的綜合體現(xiàn),是當(dāng)前國內(nèi)外研究的熱點問題之一。在各領(lǐng)域機器人設(shè)計活動也已經(jīng)很廣泛的開展起來,這種氛圍對我國機器人的研制開發(fā)以及專業(yè)方面人才的培養(yǎng)是具有積極的意義。國內(nèi)外的發(fā)展現(xiàn)狀長期以來,人們就想往能在垂直陡壁上攀行,進(jìn)行各種作業(yè)。近年來出現(xiàn)的攀行機器人,實現(xiàn)了這種理想。由于在垂直陡壁上作業(yè)是非常困難和危險的,超越了人的能力極限,所以在國外稱此類機器人為極限作業(yè)機器人。壁面攀行機器人可用來代替人工進(jìn)行的一些危險操作,進(jìn)行各種儲存有毒有害介質(zhì)的儲存罐以及高層鋼結(jié)構(gòu)建筑物表面的檢測工作。其中包括核工業(yè)和城市石化工業(yè)球形儲液罐的視覺檢查、超聲側(cè)厚和焊縫探傷等作業(yè)。它可以代替人類做一些危險的工作,并取得了很大的應(yīng)用價值。因此,該項目成為國內(nèi)外科研人員研制開發(fā)的熱點。這種鋼結(jié)構(gòu)檢測用攀行機器人己在部分工程項目中得到了有效的應(yīng)用,具有潛在的市場應(yīng)用價值,機器人作為一種能代替人工作業(yè)的智能機器,有著廣泛的應(yīng)用前景隨著機器人技術(shù)的不斷發(fā)展,機器人的小型化、微型化成為機器人技術(shù)發(fā)展的重要方向之一。開發(fā)一種小型、便攜的攀行機器人在軍事和民用方面都具有重要意義。在軍事方面,它可以被投放在敵后,攀行于建筑物的表面或玻璃壁面上,對室內(nèi)的情況進(jìn)行偵察;或者充當(dāng)可移動的爆破物,近距離殺傷敵方的重要設(shè)施和人員。民用方面可用于高層建筑的表面檢測或進(jìn)行清洗。但是傳統(tǒng)的攀行機器人或是采用磁吸附方式,依靠磁力吸附于金屬壁面,不適合工作在鋼結(jié)構(gòu)建筑物的表面;或是采用由真空泵或真空發(fā)生器抽吸空氣產(chǎn)生吸附力的主動吸附方式,需要外接氣源,連接大量的支持設(shè)備,能量耗費大,而且一般伴有較大的噪音,機器人的體積和活動范圍都受到限制,不宜在小型攀行機器人上使用。在高層鋼結(jié)構(gòu)建筑物的表面檢測工作中,預(yù)防性定期檢測和被迫性事后檢測維修工作都存在著較大的缺陷,人工檢測已經(jīng)無法滿足。隨鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計2著科學(xué)技術(shù)的發(fā)展,機器人代替人工進(jìn)行高層建筑的危險檢測工作成為了一種新的趨勢,攀行檢測機器人將會得到更廣泛的應(yīng)用。當(dāng)前,國內(nèi)外都非常重視鋼結(jié)構(gòu)攀行檢測機器人的研制,主要是因為它有著廣泛的用途,特別是它可以在一些危險環(huán)境以及高層鋼結(jié)構(gòu)建筑物表面上進(jìn)行攀行檢測作業(yè)。攀行檢測機器人是一種新型特種機器人,能在危險工作狀態(tài)下代替人工作業(yè),因此具有廣闊的應(yīng)用前景。由于傳統(tǒng)攀行機器人具有很多的不足之處(如對壁面的材料和形狀適應(yīng)性不強,跨越障礙物的能力弱,體積大,質(zhì)量重等) ,因此未來爬壁機器人的結(jié)構(gòu)應(yīng)該向著實用化的方向發(fā)展。該機器人機構(gòu)合理,性能完善,并且可以代替人工進(jìn)行高空環(huán)境作業(yè),降低了人類高空作業(yè)的危險系數(shù);也大大提高了作業(yè)效率。這將意味著為高空鋼結(jié)構(gòu)表面的檢測工作,開辟了應(yīng)用機器人代替人力作業(yè)的新領(lǐng)域。1.2 國內(nèi)外機器人的研究和發(fā)展?fàn)顩r圖 1.1 履帶式機器人 圖 1.2 履帶式機器人鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計3攀行檢測機器人有著很大應(yīng)用前景,它一經(jīng)問世就受到了各方面的重視。1966 年日本的西亮教授首次研制成功壁面移動檢測機器人樣機,并在大阪府立大學(xué)表演成功。這是一種依靠負(fù)壓吸附的攀行機器人。隨后出現(xiàn)了各種類型的攀行機器人,到 80 年代末期已經(jīng)開始在生產(chǎn)中應(yīng)用。日本在開發(fā)爬壁機器人方面發(fā)展最為迅速,主要應(yīng)用在建筑行業(yè)與核工業(yè)。日本清水建設(shè)公司開發(fā)了建筑行業(yè)用的外壁涂裝與貼瓷磚的機器人,他們研制的負(fù)壓吸附清洗玻璃面的爬壁機器人,曾為加拿大使館進(jìn)行過清洗。東京工業(yè)大學(xué)開發(fā)了無線遙控磁吸附爬壁機器人。在日本通產(chǎn)省“極限作業(yè)機器人”國家研究計劃支持下,日暉株式會社開發(fā)了用于核電站大罐的負(fù)壓吸附壁面檢測機器人。它有兩個獨立的負(fù)壓吸盤,可以在遙控下由地面自動爬行到大罐的弧形壁面,作視覺檢查與測厚,并可以跨越障礙。日本關(guān)西電力株式會社開發(fā)了核電站壁面點檢的爬壁機器人,移動速度為每分 5 米,負(fù)重 50 公斤。日立制造所研制了履帶式磁吸附檢查機器人,帶有超聲檢測裝置,如圖 1-1 所示,該機器人可以垂直攀行于鋼結(jié)構(gòu)表面上進(jìn)行檢測工作。由于機器人采用了負(fù)荷分散機構(gòu),它能夠適應(yīng)各種凹凸不平的曲面和棚頂。英國在攀行機器人領(lǐng)域也取得許多成果。90 年代初RTD 公司推出了輪式磁吸附爬壁機器人(取名 Beetle),已作為商品銷售。最高爬行速度達(dá)每分種 12 米,可以自動記錄每隔一定距離的壁厚,最高爬行高度為 25 米。英國南岸大學(xué)于 1994 年研制成功多足多吸盤氣動型攀行檢測機器人,可以攜帶一個小工業(yè)機器人(例如 PUMA260),進(jìn)行超聲檢測。它自重 22 公斤,負(fù)重 20 公斤。最近來自英國的報道,一種取名為羅布格三號的攀行機器人在貝德福市作演示。它有 8 條腿,類似巨型蜘蛛,能負(fù)重 100 公斤,可越障,能將磚放入準(zhǔn)確位置并進(jìn)行檢測,研制者計劃將其應(yīng)用于建筑行業(yè)。 俄羅期彼得堡國立技術(shù)大學(xué)也研制成功負(fù)壓吸附攀行機器人。我國自 90 年代以來,有許多單位根據(jù)國家經(jīng)濟(jì)建設(shè)需要,研制成功各種類型與功能的攀行機器人。上海交通大學(xué)研制成功測量大罐容積的磁吸附攀行檢測機器人。哈爾濱理工大學(xué)研制成功測量大罐漆膜厚度的履帶復(fù)合式攀行機器人。哈爾濱工業(yè)大學(xué)研究所在“863 計劃”支持下,于 1994 年研制成功核工業(yè)用的壁面攀行遙控檢查機器人,最近又與大慶采油一廠合作,研制成功采油行業(yè)中大量使用的儲罐防腐用噴吵、噴漆履帶式磁吸附爬壁機器人,在現(xiàn)場試驗,取得成功,如圖 1-2 所示。當(dāng)前,國內(nèi)外都非常重視爬壁機器人的研制,主要是因為它有著廣泛的用途,特鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計4別是它可以在一些危險環(huán)境下進(jìn)行作業(yè)。主要的用途有: (1)對石化企業(yè)中大量圓柱形大罐或球罐內(nèi)外壁面進(jìn)行檢查、探傷或噴砂除銹、噴漆防腐; (2)清洗高層建筑物的瓷磚壁面或玻璃墻面; (3)在建筑行業(yè)用于巨型墻面噴漆、砌磚、貼瓷磚和點檢; (4)在核工業(yè)中對大罐進(jìn)行視覺檢查、測厚和焊縫探傷; (5)在消防部門用以遞送急救布帶,運送水帶和水槍; (6)在造船行業(yè)用于噴砂除銹或噴涂船體及其內(nèi)壁等,特別是對修船行業(yè),可以快速地將船體進(jìn)行防腐處理。可見機器人作為新一代的生產(chǎn)工具,能夠代替人完成人力所不及或人所不適宜的工作。隨著機器人在各個領(lǐng)域的應(yīng)用,對機器人的綜合性能提出了更高的要求,專業(yè)化更強,實用性更高,經(jīng)濟(jì)性要求也已經(jīng)擺到了人們的面前,因此,結(jié)構(gòu)簡單、操作方便、能滿足功能要求又具有一定的可靠性的微型機器人或者說功能專一的機器人需求量越來越大。1.3 機器人的基本結(jié)構(gòu)及其分類機器人作為典型的機電一體化產(chǎn)品,其控制方式經(jīng)歷了三代發(fā)展:第一代是示教再現(xiàn)式可編程機器人,具有記憶、存儲功能,能按照作者在示教階段給出的軌跡重復(fù)進(jìn)行特定的作業(yè)過程,但對周圍環(huán)境基本上沒有感知和環(huán)境信息反饋控制的能力。隨著傳感器技術(shù)包括視覺傳感器、非視覺傳感器(力覺、觸覺、接近覺等)以及信息處理技術(shù)的發(fā)展,出現(xiàn)了第二代機器人則具有感覺功能的自適應(yīng)機器人,在獲取作業(yè)環(huán)境和作業(yè)對象的部分有關(guān)信息的基礎(chǔ)上,能夠進(jìn)行一定的適時處理、按照固定的邏輯發(fā)出動作命令。第三代是智能機器人,該種機器人不僅具有第二代機器人更完善的環(huán)境感知功能,而且具有邏輯思維、學(xué)習(xí)、判斷和決策功能,可根據(jù)作業(yè)要求和環(huán)境信息自主的進(jìn)行工作,該機器人目前正處于研制和開發(fā)過程中,預(yù)計到 21 世紀(jì)初期將進(jìn)入普及階段。盡管機器人的外觀、形狀和功能各異,但它們的主要構(gòu)成基本上是一致的,從控制觀點上講,機器人系統(tǒng)可分為四部分:人機接口、控制系統(tǒng)、驅(qū)動系統(tǒng)和執(zhí)行機構(gòu)。 本論文所研究的鋼結(jié)構(gòu)攀行用檢測機器人采用伸縮前進(jìn)的方式進(jìn)行攀行,主要分為:前進(jìn)機構(gòu)、回轉(zhuǎn)機構(gòu)和腳部。采用步進(jìn)電機來驅(qū)動機器人的行進(jìn),通過機器人編程來實現(xiàn)機器人的各種運動。鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計51.4 本論文主要研究內(nèi)容鋼結(jié)構(gòu)檢測用攀行機器人屬特種作業(yè)機器人,在核工業(yè)、石化企業(yè)、建筑行業(yè)、消防部門、造船等領(lǐng)域均有廣泛的應(yīng)用,自二十世紀(jì)六十年代出現(xiàn)以來,一直受到世界各國的關(guān)注,具有廣闊的應(yīng)用前景。本論文研究的是一種集移動、轉(zhuǎn)向和升降功能于一體的全方位移動的攀行檢測機器人,并對攀行機器人的機構(gòu)設(shè)計、運動學(xué)與動力學(xué)、路徑規(guī)劃以及控制系統(tǒng)等關(guān)鍵技術(shù)展開了研究。 論文首先介紹了攀行檢測機器人的國內(nèi)外發(fā)展現(xiàn)狀和應(yīng)用情況,通過閱讀大量文獻(xiàn)和借鑒已有的類似成果,理論聯(lián)系實際,提出了機器人本體結(jié)構(gòu)方案和運動方案。分析表明該機器人能夠攀行于鋼結(jié)構(gòu)的表面上,具有穩(wěn)定性能高、越障能力強、負(fù)載大、能任意方向直行或在原地旋轉(zhuǎn)任意角度,是對高層壁面進(jìn)行監(jiān)控、維護(hù)和檢測的良好載體,具有一定的理論意義和實用價值。本論文主要研究以下幾個方面的問題:(1) 鋼結(jié)構(gòu)檢測用攀行機械人總體方案的確定機器人是典型的機電一體化裝置,必須采用系統(tǒng)的觀點,立足全局,對機器人各功能模塊進(jìn)行合理劃分。首先根據(jù)設(shè)計要求從理論上分析工作狀況,然后提出設(shè)計思路,包括傳動方式、控制方式等,在綜合分析的基礎(chǔ)上,整體規(guī)劃攀行檢測機器人的整體結(jié)構(gòu)形式、驅(qū)動裝置、傳動系統(tǒng),從而選定最優(yōu)方案。(2) 鋼結(jié)構(gòu)檢測用攀行機器人前進(jìn)機構(gòu)方案的設(shè)計怎樣把步進(jìn)電機的動力傳遞給機器人的前進(jìn)機構(gòu),是本設(shè)計的一個重點方面,本文結(jié)合作業(yè)中的實際要求,采用直線導(dǎo)軌作為傳動元件通過齒條和齒輪的嚙合來實現(xiàn)機器人的前進(jìn)運動。(3) 鋼結(jié)構(gòu)檢測用攀行機器人回轉(zhuǎn)機構(gòu)方案的設(shè)計機器人是典型的機電一體化產(chǎn)品,實現(xiàn)在攀行過程中行進(jìn)方向的轉(zhuǎn)換,考慮機器人料的形狀和質(zhì)量,采用在機器人機身中間安裝三角電磁吸盤吸附,通過步進(jìn)電機驅(qū)動實現(xiàn)機身的整體回轉(zhuǎn),從而改變機器人的行進(jìn)方向。(4) 鋼結(jié)構(gòu)檢測用攀行機器人電磁腳方案的設(shè)計為了使機器人能夠在鋼結(jié)構(gòu)上自由行走,在機器人的腳部安裝七個微盤組鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計6合是電磁吸盤,在機器人的前后各安裝兩個電磁腳,機身中間安裝一個三角式電磁腳,這樣可以保證機器人的行進(jìn)穩(wěn)定,并可在有溝槽或不平整的鋼結(jié)構(gòu)壁面上吸附并行走。(5) 機器人的檢測方案設(shè)計檢測系統(tǒng)可以理解成由多個環(huán)節(jié)組成的能實現(xiàn)對某一物理量進(jìn)行測量的完整系統(tǒng)?,F(xiàn)代檢測技術(shù)的一個明顯特點是傳感器采用電參量、電能量或數(shù)字傳感器以及微型傳感器,信號處理采用集成電路和微處理器。所以本設(shè)計采用的是在機器人的頭部安裝一個微型攝像頭,從而可以完成對鋼結(jié)構(gòu)表面的檢測工作。檢測系統(tǒng)在測量過程中,首先由傳感器將被測物理量從研究對象中檢測出來并轉(zhuǎn)換成電量,然后輸出。檢測系統(tǒng)及其組成見圖 1-3。圖 1.3 檢測系統(tǒng)2. 鋼結(jié)構(gòu)檢測用攀行機器人總體方案設(shè)計機器人是典型的機電一體化產(chǎn)品,合理分配機械、電子、硬件、軟件各部分所承擔(dān)的任務(wù)和功能,對提高系統(tǒng)的整體性能、結(jié)構(gòu)簡化、成本降低起著舉足輕重的作用。因此,對鋼結(jié)構(gòu)檢測用攀行機器人采用系統(tǒng)的觀點進(jìn)行整體功能分析,可以實現(xiàn)整體結(jié)構(gòu)優(yōu)化,是實現(xiàn)經(jīng)濟(jì)性、靈活性和高可靠穩(wěn)定性系統(tǒng)設(shè)計的重要環(huán)節(jié)和關(guān)鍵步驟。2.1 機器人的任務(wù)要求和機械系統(tǒng)隨著社會城市化進(jìn)程的不斷發(fā)展,鋼結(jié)構(gòu)的高層建筑物也越來越多,為了檢測建筑物的表面工作是否存在安全隱患,人類必須要進(jìn)行高空作業(yè),但是高空作業(yè)難度系數(shù)及其高,危險性也很大,為了保障高空作業(yè)的安全性,人們不鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計7斷研究能夠進(jìn)行鋼結(jié)構(gòu)檢測用的攀行機器人來代替人類進(jìn)行高空作業(yè),這樣便加快高空作業(yè)機器人的誕生速度。要求機器人能夠沿著鋼結(jié)構(gòu)表面進(jìn)行攀行,在攀行過程中,完成對鋼結(jié)構(gòu)建筑物表面的檢測工作,設(shè)計的機器人通過機身中間的一只三足電磁腳先吸附在建筑物表面上,然后依靠步進(jìn)電機將機器人的前進(jìn)機構(gòu)整體前移,再將安裝在前進(jìn)裝置上的兩對電磁腳降下來吸附在建筑物表面上,再將機身中間的三足電磁腳提升通過步進(jìn)電機將機身前移,這樣便完成了機器人的攀行動作。機器人是通過電磁腳的交替運作來實現(xiàn)整體伸縮前進(jìn)的。這樣設(shè)計出一種可以在高空危險環(huán)境下運動,并具有穩(wěn)定運動模式的小型鋼結(jié)構(gòu)攀行機器人。該機器人采用腿式交替伸縮的運動模式,可以提高其環(huán)境適應(yīng)能力和越障能力,并且比履帶式運動模式和三足旋轉(zhuǎn)式運動模式具有良好的穩(wěn)定性。研究開發(fā)的機器人采用了 ARM+DSP 結(jié)構(gòu)的嵌入式控制系統(tǒng)以及遙控/半自主的工作方式,具有高機動性、小型化、輕量化、可復(fù)位以及低功耗、高實時性等特點。機械結(jié)構(gòu)是鋼結(jié)構(gòu)檢測用攀行機器人最終的機構(gòu)載體,是機器人賴以實現(xiàn)各種運動的基礎(chǔ),機械結(jié)構(gòu)的布局、類型、傳動方式以及驅(qū)動系統(tǒng)的設(shè)計直接關(guān)系著機器人的工作性能。機器人的機械系統(tǒng)由以下幾個子系統(tǒng)組成:1)機械子系統(tǒng),由剛體和彈性體組成;2)傳感系統(tǒng);3)執(zhí)行系統(tǒng);4)控制器;5)信息處理系統(tǒng)。子系統(tǒng)之間的通信是通過接口進(jìn)行的,接口的基本功能是把從一個部分傳到另一個部分的信息解碼。如圖 2-1 所示,是經(jīng)典機械系統(tǒng)的方塊圖,系統(tǒng)的輸入是事先確定的任務(wù),它是由實時或離線給定的。前者在本質(zhì)上看成是智能的,后者是可編程序的機械。因此,人工智能(artificial intelligent)技術(shù)的軟件系統(tǒng)描述智能機械的任務(wù)。這種系統(tǒng)可以代替人進(jìn)行再決策。可編程機器人要求人通過程序向低水平控制或控制系統(tǒng)給定任務(wù)。程序的低水平的意思是:機械的動作被指定為關(guān)于關(guān)節(jié)動作或與正在執(zhí)行任務(wù)的特定體的基點相聯(lián)系起來的笛卡爾坐標(biāo)的序列。機器人的機械系統(tǒng)輸出是通過傳感器監(jiān)測的實際任務(wù)(actual task) 。傳感器以反饋信號的形式傳遞作業(yè)信息并與事先設(shè)定的動作相比較,事先設(shè)定的任務(wù)與執(zhí)行動作間的誤差反饋給控制器,然后合成必要的較正信號。這些信號反饋給執(zhí)行元件,驅(qū)動機械系統(tǒng)完成所要求的動作,形成閉環(huán)。鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計8在機器人的控制系統(tǒng)中,通過人來構(gòu)成閉環(huán)控制的稱為遙控機器人(telemanipulators) 。遙控機器人是人借助于復(fù)雜負(fù)載的傳感器和顯示裝置進(jìn)行控制的機械系統(tǒng)。在方案設(shè)計階段,要正確地處理好借鑒與創(chuàng)新的關(guān)系。同類機械成功的先例應(yīng)當(dāng)借鑒,原先薄弱環(huán)節(jié)及不符合現(xiàn)有任務(wù)要求的部分應(yīng)當(dāng)加以改進(jìn)或者根本改變。圖 2.1 控制系統(tǒng)2.2 機器人結(jié)構(gòu)的設(shè)計本論文多足檢測攀行機器人,即攀行機器人的腿要多于兩條腿。對于攀行機器人來說穩(wěn)定性是主要問題,需要考慮它的靜穩(wěn)定性和動穩(wěn)定性。靜態(tài)穩(wěn)定性只考慮在支撐位形下重力的作用,而動態(tài)穩(wěn)定性需要考慮重力和慣性力的共同作用。直觀上講,靜態(tài)穩(wěn)定性需要更多的接觸點,也就是比動態(tài)穩(wěn)定性需要更多的腿。跳躍機器人和兩腿步行機器人是步行機器人中依靠動態(tài)穩(wěn)定性的例子。為了穩(wěn)定時平衡,行走機器人需要具有運動結(jié)構(gòu),以提供平衡機器人重力的地面反作用力。兩腿機器人沒有靜態(tài)平衡能力,因為一條腿在轉(zhuǎn)移相時,身體只剩下一個接觸點,不能提供保持平衡所須的力。所以在運動時,最少要求鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計9用三條腿來保持穩(wěn)定。所以在機器人的機身中間設(shè)計了一個三足吸盤,這樣就能提供與地面反作用平衡的里同樣,維持靜平衡一般四條腿,所以在機器人的結(jié)構(gòu)設(shè)計時,在機器人的前后兩端各安裝了四只電磁腳,用來保證機器人的運動穩(wěn)定。機器人的基本結(jié)構(gòu)框架采用鋁板制作,即采用一塊長 540mm×寬 275mm×高 170mm 的一塊鋁合金板作為機器人的機身,并制作成一個框架。電機安裝在機器人的機身中間如圖 2-2 所示。圖 2.2 機身尺寸如上圖,機器人框架上端面三個 Φ8 的孔是用來安裝三個齒輪軸的,一個鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計10Φ70 的孔是用來安裝機器人的回轉(zhuǎn)機構(gòu),一個 Φ50 的孔是用來安裝步進(jìn)電機的,在安裝的時候要保證各齒輪之間是相互嚙合的??蚣艿闹虚g是空的,這樣急節(jié)省了材料又減輕了機器人本身的重量??梢栽跈C身框架中安裝兩根導(dǎo)軌,用來保證安裝在機身中間的機器人前進(jìn)機構(gòu)可以自由伸縮,并能達(dá)到機器人的前進(jìn)的行程要求。圖 2.3 機身尺寸設(shè)計如圖 2-3 是機器人的前進(jìn)機構(gòu)簡圖。前進(jìn)機構(gòu)前后兩個 Φ70 的圓孔用來安裝機器人的升降機構(gòu),并在升降機構(gòu)的下邊分別安裝兩個電磁腳,這樣便保鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計11證了機器人的穩(wěn)定性。前進(jìn)機構(gòu)總長 800mm,寬 175mm,中間是空的,在中間的兩個薄板的內(nèi)壁上分別安裝兩個齒條,用來和傳動齒輪嚙合,這樣就可以使前進(jìn)裝置相對于機器人的機身運動了。采用這樣設(shè)計的優(yōu)點是將機器人分成兩個部分,一個是機器人的機身,一個是機器人的前進(jìn)機構(gòu),可以節(jié)約材料,減少機器人的自身重量,最主要的是能夠保證機器人的傳動穩(wěn)定,運動的靈活性,精簡了機器人的結(jié)構(gòu)。它的整體布局結(jié)構(gòu)合理,如圖 2-4 所示。整個機器人系統(tǒng)設(shè)計為兩個自由度,將運動分解為兩部分:移動部分和回轉(zhuǎn)部分。移動部分占一個自由度,即使機器人前后的移動機構(gòu);回轉(zhuǎn)部分占一個自由度,即控制機器人方向的旋轉(zhuǎn)運動機構(gòu),這兩個自由度之間沒有耦合,相互不干擾。鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計12圖 2.4 總體布局圖2.3 傳動系統(tǒng)設(shè)計傳動裝置的作用主要是將驅(qū)動元件的動力傳遞給機器人相應(yīng)的執(zhí)行部件,以實現(xiàn)各種預(yù)定的運動。目前常用的傳動方式有: 齒輪傳動、皮帶輪傳動、鏈條傳動、齒輪齒條傳動、蝸輪蝸桿傳動、諧波減速傳動以及螺旋傳動等。諧波減速傳動具有體積小、結(jié)構(gòu)緊湊、效率高、能獲得大的傳動比等優(yōu)點,但存在扭轉(zhuǎn)剛度較低且傳動比不能太小的缺點;皮帶輪傳動可以實現(xiàn)過載保護(hù),可是存在彈性滑動,和鏈傳動一樣使用一段時間后易松弛,傳動運轉(zhuǎn)過程中還產(chǎn)生動載荷;鏈傳動雖然成本低,但鏈傳動的制造與安裝精度要求低,不適合用在要求傳遞精度高的機構(gòu)當(dāng)中,鏈傳動在兩根平行軸間職能用于同向回轉(zhuǎn)的傳動,運轉(zhuǎn)時不能保持恒定的傳動比,磨損后易發(fā)生跳齒,工作時候噪音大,不宜在載荷變化很大和急速反向的傳動中應(yīng)用。因此,它們常用于傳動精度要求不高的場合。(1)機器人回轉(zhuǎn)部分傳動本設(shè)計采用齒輪傳動來作為回轉(zhuǎn)傳動。齒輪傳動的主要特點有:1)效率高 在常用的機械傳動中,以齒輪傳動效率為最高。如一級圓柱齒輪傳動的效率可達(dá) 99%。這對功率的傳遞十分重要,因為即使效率只提高1%,也有很大的經(jīng)濟(jì)意義。2)結(jié)構(gòu)緊湊 在同樣的使用條件下,齒輪傳動所需的空間尺寸一般較小。3)工作可靠、壽命長 設(shè)計制造正確合理、使用維護(hù)良好的齒輪傳動,工作十分可靠,壽命可長達(dá)一、二十年,這也是其他機械傳動所不能比擬的。這對機械傳動來說有著很大的經(jīng)濟(jì)性和實用性。4)傳動比穩(wěn)定 傳動比穩(wěn)定往往是對傳動性能的基本要求。齒輪傳動獲得廣泛應(yīng)用,也就是由于具有這一特點。但是齒輪傳動的制造及安裝精度要求高,價格較貴,切不宜用于傳動距離大的場合。故選用齒輪傳動作為機器人回轉(zhuǎn)裝置的基本傳動裝置,這樣便可以保證了機器人的回轉(zhuǎn)運動。如圖 2-5 所示,是機器人的回轉(zhuǎn)機構(gòu)。鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計13圖 2.5 機器人回轉(zhuǎn)機構(gòu)(2)機器人前進(jìn)部分傳動而能夠使機器人的前進(jìn)機構(gòu)運動主要是依靠齒輪齒條進(jìn)行動力的傳遞。選用齒輪齒條傳遞,主要是考慮機器人的內(nèi)部結(jié)構(gòu)的要求,將齒條安裝固定在前進(jìn)裝置的內(nèi)表面上,如圖 2-6 所示,這樣便可以與齒輪嚙合上,并能傳遞齒輪鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計14所傳遞的驅(qū)動力,從而使得機器人前進(jìn)。圖 2.6 機器人前進(jìn)機構(gòu)(3)機器人升降部分傳動機器人的升降機構(gòu)采用的是蝸桿傳動,蝸桿傳動是在空間交錯的兩軸間傳遞運動和動力的一種傳動機構(gòu),兩軸線交錯的夾角可為任意值,通常用的為90o。這種傳動由于具有下述特點,故應(yīng)用頗為廣泛。1)當(dāng)使用單頭蝸桿(相當(dāng)于單線螺紋)時,蝸桿旋轉(zhuǎn)一周,渦輪只轉(zhuǎn)過一個齒距,因而能實現(xiàn)大的傳動比。在動力傳動中,一般傳動比 i=5—8;在分度機構(gòu)或者手動機構(gòu)的傳動中,傳動比可達(dá) 300;若只傳遞運動,傳動比可達(dá) 1000。由于傳動比大,零件數(shù)目又少,因而結(jié)構(gòu)很緊湊。2)在蝸桿傳動中,由于蝸桿齒是連續(xù)不斷的螺旋齒,它和渦輪齒是逐漸進(jìn)入嚙合及逐漸退出嚙合的,同時嚙合的齒對有較多,故沖擊載荷小,傳動穩(wěn)定,噪音低。3)當(dāng)蝸桿的螺旋線升角小雨嚙合面的當(dāng)量摩擦角時,蝸桿傳動便具有自鎖性。鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計154)蝸桿傳動與螺旋齒輪傳動相似,在嚙合處有相對滑動。當(dāng)滑動速度很大,工作條件不夠良好的時候,會產(chǎn)生較嚴(yán)重的摩擦與磨損,從而引起過分發(fā)熱,使?jié)櫥闆r惡化。因此摩擦損失較大,效率低,當(dāng)傳動具有自鎖性時,效率僅為 0.4 左右。同時由于摩擦與磨損嚴(yán)重,常需耗用有色金屬制造渦輪(或蝸圈) ,以便與鋼制渦輪配對組 成減摩性良好的滑動摩擦副。本設(shè)計采用的是環(huán)面蝸桿傳動,如圖 2-7 所示。環(huán)面蝸桿的傳動特征是,蝸桿體在軸外的外形是以凹圓弧為母線所形成的旋轉(zhuǎn)曲面,所以把這種蝸桿傳動叫做環(huán)面蝸桿傳動。在這種傳動的嚙合帶內(nèi),渦輪的節(jié)圓位于蝸桿的節(jié)弧面上,亦即蝸桿的節(jié)弧沿渦輪的節(jié)圓包著渦輪。在中間平面內(nèi),蝸桿和渦輪都是直線齒廓。由于同時相嚙合的齒對多,而且齒輪的接觸線與蝸桿齒運動的方向近似于垂直,這就大大改善了輪齒受力情況和潤滑油膜形成的條件,因而承載能力約為阿基米德蝸桿傳動的 2—4 倍,效率一般高達(dá) 0.85—0.9;但它需要較高的制造和安裝精度。整體升降機構(gòu)如圖 2-8 所示。圖 2.7 環(huán)面蝸桿傳動鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計16圖 2.8 機器人升降機構(gòu)2.4 驅(qū)動系統(tǒng)性能分析與方案設(shè)計機器人驅(qū)動系統(tǒng)的設(shè)計往往要受到作業(yè)環(huán)境條件的限制,同時還要考慮價格因素的影響以及所能達(dá)到的技術(shù)水平。目前機器人的驅(qū)動方式主要有液壓驅(qū)動、氣動驅(qū)動和電氣驅(qū)動三種形式。液壓驅(qū)動系統(tǒng)能夠提供較大的驅(qū)動壓力和功率,具有結(jié)構(gòu)簡單、性能穩(wěn)定等特點,液壓伺服驅(qū)動系統(tǒng)響應(yīng)速度快,可達(dá)到較高的定位精度和剛度,但油路系統(tǒng)復(fù)雜,工作性能受環(huán)境影響較大,移動性能差,且易造成泄漏現(xiàn)象,常用于要求提供較大驅(qū)動力矩、對移動性能要求差的特大功率機器人系統(tǒng)中。氣動系統(tǒng)具有結(jié)構(gòu)簡單、動作迅速,可在惡劣的環(huán)境中工作,但氣動裝置也存在噪聲問題,只適用于精度要求不高的點位系統(tǒng)中。電氣驅(qū)動系統(tǒng)具有精度高、控制準(zhǔn)確、響應(yīng)迅速等優(yōu)點。綜合考慮各種驅(qū)動式的優(yōu)缺點,選用電氣驅(qū)動方式。電氣驅(qū)動方式包括普通電機、直流伺服電機、交流伺服電機和步進(jìn)電機以及力矩電機等驅(qū)動方式。伺服電機轉(zhuǎn)子慣量小、動態(tài)特性好,由伺服電動機所構(gòu)成的機器人驅(qū)動系統(tǒng)具有運行精度高、調(diào)速范圍廣、速度運行平滑、具有高可靠性并易于控制等優(yōu)點,交直流伺服電動機己成為機器人驅(qū)動系統(tǒng)的主流,直流伺服電動機的電刷易磨損形成電火花,限制了其應(yīng)用范圍。近年來隨著交流調(diào)速技術(shù)的迅速發(fā)展,交流電機的驅(qū)動系統(tǒng)得到了廣泛的應(yīng)用,但是交流伺服電機必須采用閉環(huán)控制方式,這種復(fù)雜的控制系統(tǒng)造成控制成本大大提高。隨著集成電路技術(shù)的發(fā)展,伺服系統(tǒng)的價格在大幅度降低,可靠性也得到了提高。步進(jìn)電動機是一種可以直接將數(shù)字脈沖信號轉(zhuǎn)換成機械位移的機電執(zhí)行元件,具有控制簡單、響應(yīng)速度快、工作可靠、無累計誤差等優(yōu)點。它能夠直接接受數(shù)字信號,無需中間轉(zhuǎn)換,直接輸出的位移量與輸入數(shù)字脈沖量相對應(yīng),能實現(xiàn)直接的數(shù)字控制。步進(jìn)電機以開環(huán)方式工作,可省去伺服電機驅(qū)動裝置中位置檢測與反饋部分以及 A/D, D/A 轉(zhuǎn)換,從而簡化了系統(tǒng)結(jié)構(gòu),使控制成本大大降低。另外,步進(jìn)電機的抗干擾能力強、無累計定位誤差,可重復(fù)反轉(zhuǎn)而不損壞,并且步進(jìn)電機的位置和速度控制簡單,具有一定精度,使用與維護(hù)鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計17都很方便。傳統(tǒng)觀念認(rèn)為步進(jìn)電機的控制性能差、難以實現(xiàn)機器人的空間軌跡控制,因而步進(jìn)電機很少用于機器人的軌跡控制??紤]到步進(jìn)電機的輸出不是連續(xù)量,為了達(dá)到某些系統(tǒng)較高的定位精度要求,可以對步進(jìn)電機驅(qū)動系統(tǒng)進(jìn)行細(xì)分控制,也可以采用閉環(huán)控制方式獲得更高的驅(qū)動性能。由于步進(jìn)電機驅(qū)動具有較好的經(jīng)濟(jì)性,隨著電機制造技術(shù)的提高,尤其是步進(jìn)電機驅(qū)動技術(shù)的革命性變化,步進(jìn)電機也己經(jīng)被廣泛應(yīng)用于數(shù)控機床、復(fù)印機、打印機以及機器人關(guān)節(jié)臂的驅(qū)動上。平面關(guān)節(jié)型機器人多采用步進(jìn)電機直接驅(qū)動方式,不但可以節(jié)省機械傳動裝置,而且可以有效的消除機械減速所帶來的誤差和效率的降低,提高運行的速度和定位精度。開環(huán)控制由于不存在噪聲干擾問題,工作安全可靠,系統(tǒng)簡單,價格低廉,特別是電子、計算機技術(shù)的迅速發(fā)展和提高,步進(jìn)電機開環(huán)控制精度幾乎能達(dá)到閉環(huán)控制的控制精度??紤]到控制的方便性、可靠性以及系統(tǒng)整體上的經(jīng)濟(jì)性,對移動系統(tǒng)和控制手爪轉(zhuǎn)動的電機均采用步進(jìn)電機構(gòu)成的開環(huán)驅(qū)動控制方式。開環(huán)控制可以大大簡化系統(tǒng)結(jié)構(gòu),減輕計算機的運算負(fù)擔(dān),并且可以降低成本和提高可靠性??刂剖肿ラ_合的電機則選用一般的交流電機即可。在步進(jìn)電機的選型上,考慮到步進(jìn)電機品種規(guī)格較多,仔細(xì)分析它們的特點,來恰到好處的選擇。步進(jìn)電機按結(jié)構(gòu)和工作原理可分為反應(yīng)式、永磁式以及混合式等幾種。反應(yīng)式步進(jìn)電機:又稱可變磁阻型(VR-Variable Resistance),多為單極性勵磁,結(jié)構(gòu)簡單,精度容易保證,步距角小,啟動和運行頻率較高,但勵磁電流較大,電機內(nèi)部阻尼小,低頻時容易產(chǎn)生振蕩,斷電后無定位轉(zhuǎn)矩。永磁式步進(jìn)電機(PM--Permanent Magnet Type):步距角大,啟動頻率較低,但控制功率較小,效率高,造價便宜,內(nèi)部阻尼大,不易振蕩,斷電后有定位轉(zhuǎn)矩。與 VR 相比轉(zhuǎn)矩大,但轉(zhuǎn)子慣性也較大。混合式步進(jìn)電機(HT--Hybrid Type):是永磁式和反應(yīng)式相結(jié)合的一種形式。兼有磁阻式步距角小、響應(yīng)頻率高和永磁式勵磁功率小、效率高的優(yōu)點。但是結(jié)構(gòu)復(fù)雜,需要正反脈沖供電,成本較高。如圖 2-9 所示的電機模擬圖,可以清楚的看到電機的內(nèi)部。鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計18圖 2.9 電機模擬圖根據(jù)幾種常用電機的性能、特點分析,對該機器人的控制移動部分回轉(zhuǎn)和機器人升降裝置的驅(qū)動由于其要求既具有較高的控制性能,又具有定位轉(zhuǎn)矩,所以均選用混合式步進(jìn)電機。步進(jìn)電機選型時還需要考慮實際工作需要,在初期確定減速比(電機轉(zhuǎn)速/負(fù)載轉(zhuǎn)速)之后,通??紤]以下幾方面的問題:1、 選擇步進(jìn)電機的步距角 b,要求 b I min ,???其中 min 為負(fù)載軸要求的脈沖當(dāng)量?2、 選擇步進(jìn)電機的轉(zhuǎn)矩初步選擇步進(jìn)電機時,可按下式選擇步進(jìn)電機的最大轉(zhuǎn)矩 Τ mT L為折算到電機軸上的總負(fù)載轉(zhuǎn)矩,包括負(fù)載的阻尼轉(zhuǎn)矩和加速轉(zhuǎn)矩。K 一系數(shù) ,一般取 2 一 3. 53、 步進(jìn)電機運行頻率 f 為 :f= =60bn?Li鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計19式中:n 一所要求的電機軸的轉(zhuǎn)速;nL一負(fù)載軸的轉(zhuǎn)速;b一步距角?4、 步進(jìn)電機的矩頻特性一般步進(jìn)電機轉(zhuǎn)矩隨運行頻率升高而迅速下降,經(jīng)過改進(jìn)的步進(jìn)電機可以在一個很寬的范圍內(nèi)保持轉(zhuǎn)矩在一個很小的幅度內(nèi)變化。但是必須保證在實際運行工況下,選用的電機可以給出足夠轉(zhuǎn)矩。2.5 控制系統(tǒng)方案設(shè)計計算機系統(tǒng)是整個機器人控制系統(tǒng)核心部分,結(jié)構(gòu)和功能的劃分以及設(shè)計的合理性直接影響著整個機器人系統(tǒng)功能的實現(xiàn),計算機控制系統(tǒng)應(yīng)具有較強的可靠性、較高的運行速度以及較好的性能價格比,在滿足工作性能要求基礎(chǔ)上體現(xiàn)出較好的經(jīng)濟(jì)性要求。(1)硬件平臺選擇在主控計算機的選用上存在兩種解決方案,即采用單片機并自行設(shè)計開發(fā)各種功能模塊構(gòu)成主控計算機系統(tǒng)和基于工業(yè)控制計算機系統(tǒng)(如 PC 總線工控機或 STD 總線工控機等)并開發(fā)必要的專用功能模塊接口板(或者利用現(xiàn)成的專用功能模塊接口板)。機器人控制部分的主控計算機選用 PC 工控機與采用單片機構(gòu)成的廉價控制系統(tǒng)方案相比較,性能差別主要體現(xiàn)在以下幾個方面:1、一般情況下,機器人關(guān)節(jié)間的運動存在級間耦聯(lián)現(xiàn)象,在關(guān)節(jié)位置和速度的控制上必須滿足適時性控制要求,因此存在大量的數(shù)據(jù)運算和處理過程,在編程上,體現(xiàn)為大量的浮點運算和程序上占用大量的內(nèi)存空間。單片機由于可尋址的存儲容量范圍有限,可能存在不能達(dá)到性能要求和編程復(fù)雜、開發(fā)工作量大等缺點,而 PC 機在數(shù)據(jù)運算和處理方面具有明顯優(yōu)勢,且開發(fā)工作量較小。2、機器人控制系統(tǒng)不僅要求具有高可靠性的硬件支持,而且要求在軟件上能實現(xiàn)各種控制功能。單片機可直接利用的現(xiàn)成軟件資源較少,而 PC 系列計算機目前具有豐富的支持軟件,使程序設(shè)計更加方便靈活而且軟件的移植靈活性好,因此基于 PC 系列計算機進(jìn)行程序開發(fā)可以避免重復(fù)性工作,并且具有完備的編程語言和開發(fā)環(huán)境。鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計203、采用單片機進(jìn)行一個完整的控制系統(tǒng)開發(fā),雖然目標(biāo)系統(tǒng)成本較低,但試制階段的費用并不低廉,更為重要的是在開發(fā)硬件系統(tǒng)時工作量大、開發(fā)周期長,而且硬件的可靠性和抗干擾性能難以達(dá)到較高要求。隨著計算機技術(shù)的不斷進(jìn)步,PC 系列工控機具有較高的可靠性和可維護(hù)性能,同時價格在大幅度降低,采用 PC 工控機進(jìn)行機器人控制系統(tǒng)的研制和開發(fā),可以有效地縮短開發(fā)周期并能降低成本,對經(jīng)濟(jì)型機器人控制系統(tǒng)是一個優(yōu)選的硬件解決方案。在機器人控制方式上,目前主要有集中式控制、主從式控制和分級控制三種方式。對于多關(guān)節(jié)機器人,每個關(guān)節(jié)對應(yīng)一個處理器,將機器人控制中計算量最大的動力學(xué)方程按關(guān)節(jié)進(jìn)行分解,作為各個子算法分布在各關(guān)節(jié)處理器上同時進(jìn)行計算,然后輸出到主控制器中,這種采用模塊化結(jié)構(gòu)、主從方式組成分布式多處理系統(tǒng),是多關(guān)節(jié)機器人控制系統(tǒng)發(fā)展的方向,目前應(yīng)用最為廣泛的是兩級或兩級以上計算機構(gòu)成的分布式控制方式。集中式系統(tǒng)是最典型、結(jié)構(gòu)最簡單的控制系統(tǒng),它將所有的信息輸入、處理、控制均集中在一臺計算機上,因而對該計算機的性能要求較高,而分布式系統(tǒng)則降低了對計算機性能的要求,且系統(tǒng)可擴(kuò)充性能好,易于維護(hù),但故障率比集中式控制方式高得多。隨著計算機技術(shù)的迅速發(fā)展和存儲技術(shù)的日新月異,許多微型機在速度和性能上己經(jīng)接近甚至超過小型機,并且在價格上大幅度降低,可靠性增強,使用和維護(hù)更加方便。同時,隨著各種技術(shù)支持軟件的豐富,使編程方便易行、軟件的可移植性高,因而采用高性能價格比的微型計算機進(jìn)行經(jīng)濟(jì)型機器人的集中式控制己成為可能。在微型機領(lǐng)域,IBM-PC 機在結(jié)構(gòu)、性能、價格特別是軟件技術(shù)支持方面都有很多優(yōu)點,使它在工業(yè)控制系統(tǒng)中得到廣泛的應(yīng)用。因此,該機械手控制系統(tǒng)采用集中控制方式,利用工 BM-PC586 作為控制計算機,另外加一塊 PCL-839 接口卡作為步進(jìn)電機驅(qū)動器運動控制用接口卡,這樣既增加了硬件的可靠性,又縮短了開發(fā)周期。(2)軟件系統(tǒng)硬件系統(tǒng)是控制功能賴以實現(xiàn)的物質(zhì)基礎(chǔ),軟件則是計算機系統(tǒng)協(xié)調(diào)各部件完成控制功能的神經(jīng)中樞。軟件功能的劃分與結(jié)構(gòu)上的實現(xiàn)在計算機控制系統(tǒng)中具有極其重要的作用。軟件設(shè)計的目標(biāo)是依據(jù)需要完成整體功能以最優(yōu)的方式把軟件各部分內(nèi)容有機組織起來,使整個系統(tǒng)具有較高的運行效率、可靠鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計21性、靈活性和操作實用性。該機械手軟件系統(tǒng)主要承擔(dān)的功能包括:運動學(xué)運算、路徑規(guī)劃、參數(shù)輸入、人機接口控制以及故障報警和處理系統(tǒng),在功能的實現(xiàn)上應(yīng)使系統(tǒng)具有較好的人機界面和靈活的操作控制功能。3.機器人參數(shù)的計算 3.1 機器人的機身重量如圖 2-2、2-3 所示,為機器人機身的結(jié)構(gòu)尺寸,先計算出機器人的機身體積如下:圖 2-3 所示的機架體積為: 371 10.25780mV????2 446故 367721 1095. m?????圖 2-2 所示的架體體積為: 373 105.705V????4 m故 367743 1095.425.2. ?????所以機器人的機身體積為: 3766.109.1095.7mV????根據(jù)公式 M=ρV, 取鋁合金的密度 ρ= ,則機器人的機身重/Kg量為: M=ρV= =34.2Kg3/.2mKg?3724.3.2 選擇步進(jìn)電機型號一、機身電動機類型和結(jié)構(gòu)型式選擇類型:選用 BF 系列 55BF005 型號的步進(jìn)電機;結(jié)構(gòu):臥式型步進(jìn)電動機;二、電機技術(shù)數(shù)據(jù)、主要外形及安裝尺寸表 3-1 電機型號鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計22相數(shù) 額定電壓/V靜態(tài)電流/A步距角/o保持轉(zhuǎn)矩/N·m空載起動頻率/P·1?s外形總長3 30 3 3.75/7.5 0.343 16000 70mm3.3 齒輪傳動設(shè)計 如圖 3.1 齒輪1.高速級齒輪傳動設(shè)計(1)選擇材料,精度及參數(shù):大齒輪:45 鋼,調(diào)質(zhì), ,取25~17?HB2401?HB小齒輪:45 鋼,正火, ,取62 9齒數(shù): 18?Z 386.21??iZ傳動比: .8/3/2u精度等級 8 級(2)按齒面接觸強度設(shè)計:由公式 321t1t ][TK 2.d????????HEdZiu??Ⅰ.確定公式內(nèi)的各計算數(shù)值1)試選載荷系數(shù) Kt=1.3鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計232)計算小齒輪傳遞的轉(zhuǎn)矩mNnPT ??????? 45151 1038.790./0.93)由表查取齒寬系數(shù) =1;d?4)由表 10-6 查得材料的彈性影響系數(shù) ;MPaZE.5) 由圖 10-21 按齒面硬度查得小齒輪的接觸疲勞強度極限為; MPa506Hlim1??大齒輪的接觸疲勞強度極限 ;0a5Hlim2??6)計算應(yīng)力循環(huán)次數(shù) 9h01 17.38197jLN???n12 ./.i?7)由圖 10-19 查得接觸疲勞壽命系數(shù)9.0KHN1 98.0KHN2?8)計算接觸疲勞許用應(yīng)力取失效概率為 1%,安全系數(shù) S=1 則??MPaSHNH58609.1lim1 ????K39.2li2Ⅱ.計算1)計算小齒輪分度圓直徑 ,代入 中較小的值1td??H?321tt ][T 2.d????????HEdZiu?=48.546mm3245398.16.07.8 . ????????2)計算圓周速度 Vsm/87.1064.81.06nd1t ?????鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計243)計算齒寬 bmdt 546.8.61?????4)計算齒寬及齒高之比 b/h模數(shù): 297./Zm1tt齒高: 16.52.5h.4648/.b/?5)計算載荷系數(shù)根據(jù) V=2.96m/s,精度等級 8 級,由圖 10-8 查得 ,直齒輪,1.0KV?假設(shè) ,由表 10-3 查得 ,由表 10-2 查得10N/m/FKtA?2.kH?F?使用系數(shù) ,由表 10-4 查得 8 級精度,小齒輪相對支承非對稱布置?時: bd32H 10.)6.(8.5. ?????將數(shù)據(jù)代入則 456.13801.)6(0152H ????由 =9.78, 查圖 10-13 得 ,故載荷系數(shù)b/h4.K?KF??9.5.2VA???6) 按實際的載荷系數(shù)校正所算得的分度圓直徑( ).~2tmdtt 4.03.1/9.56.8/3317) 計算模數(shù) mZ47.2/.0/1??(3) 按齒根彎曲強度設(shè)計由公式得彎曲強度的設(shè)計公式: ??321???????FSdYZKT???Ⅰ.確定公式內(nèi)的各計算數(shù)值:1) 由圖 10-20c 查得小齒輪的彎曲疲勞極限 MPa390FE1?齒輪的彎曲疲勞極限 Pa340FE2??2) 查圖 10-18 查得彎曲疲勞壽命系數(shù) ,86.1NK2.N3) 計算彎曲疲勞許用應(yīng)力,取彎曲疲勞安全系數(shù) S=1.4,則?? aSKFENF 57.2394.18611 ????鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計25?? MPaSKFENF 43.2.10922 ????4) 計算載荷系數(shù) K 7.1??FVA5) 查取齒形系數(shù)由表 10-5 查得 72.1??FY26.??F6) 查取應(yīng)力校正系數(shù) 由表 10-5 查得 571SY4.1??S7) 計算大小齒輪的 并加以比較??FS???01783.5.23971??FSY? ??0176.43.262??FS??由此可見小齒輪的數(shù)值大Ⅱ.設(shè)計計算: ????mYZKTFSd 16.20783.21384.7.m3321 ??????????????可取由彎曲強度算得的模數(shù) 2.116mm,并就圓整為標(biāo)準(zhǔn)值 2.5mm 按接觸強度算得的分度圓直徑 ,算出小齒輪齒數(shù): .61d8.95.2401?mdZ大齒輪齒數(shù): .420.1?Zi這樣設(shè)計出的齒輪傳動,既滿足了齒面接觸疲勞強度,又滿足了齒根彎曲疲勞強度,并做到結(jié)構(gòu)緊湊,避免浪費。(4) 幾何尺寸1) 計算分度圓直徑: mZd50.21???1422) 計算中心距: ????802/50/21 ???damm鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計263) 計算齒輪寬度:齒寬取mdb501????mB502?4) 齒根高: Chaff 1.3)(2??齒全高: 6.1(5) 驗算mNbFKdTtAt /10/95.346271278.4???故合適。3.4 軸的設(shè)計 圖 3.2 軸3.4.1.軸的設(shè)計(1)求輸出軸上的功率 P,轉(zhuǎn)速 n 和轉(zhuǎn)矩 TKwP845.6?mi/0197rnNT?.(2)初步確定軸的最小直徑選取軸的材料為 45 鋼,調(diào)質(zhì)處理,根據(jù)表 15-3 查取 ,于是得103?A鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計27mnPAd8.5019.746330min ???(3)軸的尺寸如圖 3-2 所示,左軸承與齒輪左端面之間用端蓋定位,因軸承主要承受徑向載荷的作用,故選用深溝球軸承。根據(jù) ,由軸承產(chǎn)品,md8.5in?目錄中初步選取 0 基本游隙組,標(biāo)準(zhǔn)精度級選用深溝球軸承 626,其尺寸為 。選用深溝球軸承 628,其尺寸為mBDd619???則取824; ; 812L1d123?L6523?d834?; 。L73445045至此,軸的各段尺寸已初步確定。3.4.2.軸的校核1).軸上零件的周向定位:齒輪與軸的周向定位用平鍵聯(lián)接,各平鍵的尺寸為 94??hb2).倒角尺寸: 軸端倒角為 ?452?3).軸的校核①齒輪與軸的周向定位用平鍵連接。按 查得平鍵截面尺寸md123?,鍵槽用鍵槽銑刀加工。為保證齒輪與軸有良好的對中性,故94??hb選輪轂與軸的配合為 。倒角為 ,其余見視圖。 6/7nh?45?②倒角為 ,其余見視圖。?524).軸上的載荷1) 水平面內(nèi)的受力見軸的設(shè)計簡圖,選用的是 628 型深溝球軸承。a=26.5mm=11.5mm263)5.26.3()(1 ??????BlaTl mll 75.4)(7.4)(2 ?laTl .230).65.3(2)(3 ??????鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計28=11.5mm263)5.26.3()(4 ??????BlaTlmlL8.76215432NT??90 NdTFtr 8.1602tan40165.87922an3?????齒 輪各個力對 A 點取矩,則 求得,)()(321211 ????llTlNlFr,豎直方向合力 求得N6492? ,0?r 781B 點的彎矩 mMBH/98.4562784???2) 總彎矩圖和扭拒圖NBVHB /10.)10.( 42422??mNT/1065.87933?由總彎矩圖和扭拒圖可知,截面 B 受力最大,故截面 B 處為危險截面。如下圖所示。鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計294) 作為簡支梁的軸的支承跨距,畫出軸的彎矩圖和扭矩圖。鋼結(jié)構(gòu)檢測用攀行機器人設(shè)計30(4) 按彎扭合成應(yīng)力校核軸的強度校核軸上的承受最大彎矩和扭拒的截面 B 的強度,取 α=0.6,則軸的計算應(yīng)力 MPawTMca 6.2601.)8795()4.2()( 32532 ????????而軸的材料為 45 鋼,調(diào)質(zhì)處理,則 ,故 安全。??Pa?????,1???ca3.4.3 軸承的壽命計算圓錐滾子軸承 32911 的額定動載荷為 66.8KN,圓錐滾子軸承 32912的額定動載荷為 73.0KN,則hPCnLh 251605.786901601331 ????????????????h 408.363212故軸承滿足使用的要求。3.5 鍵的校核 1.軸上鍵的校核:鍵 203195/4??TGBmLhb4??,則 ,根據(jù)材料查得l MPakldTP57.13??,所以 故合適。??MaP10???,?2.步進(jìn)電機軸上鍵的校核:鍵 GB/T1095-2003346?