《2022年高一物理《曲線運(yùn)動(dòng)2》學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高一物理《曲線運(yùn)動(dòng)2》學(xué)案(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高一物理《曲線運(yùn)動(dòng)2》學(xué)案
一、運(yùn)動(dòng)的合成與分解
1、從已知的分運(yùn)動(dòng)來求合運(yùn)動(dòng),叫做運(yùn)動(dòng)的合成;求一個(gè)已知運(yùn)動(dòng)的分運(yùn)動(dòng),叫運(yùn)動(dòng)的分解。
2、平行四邊形定則及應(yīng)用:運(yùn)動(dòng)的合成與分解,主要是指物體運(yùn)動(dòng)的位移、速度和加速度的合成與分解,由于它們都是矢量,所以遵循平行四邊形定則。特別注意:已知一個(gè)合運(yùn)動(dòng),求其分運(yùn)動(dòng),一般應(yīng)按實(shí)際“效果”分解,或正交分解.
3、合運(yùn)動(dòng)與分運(yùn)動(dòng)的特性 合運(yùn)動(dòng)與分運(yùn)動(dòng)具有等時(shí)性、獨(dú)立性、等效性和同一性。
二、運(yùn)動(dòng)的合成--------蠟塊的運(yùn)動(dòng)(課本P5)
(1)在一條直線上的兩個(gè)分運(yùn)動(dòng)的合成[
例如:速度等于的勻速直線運(yùn)動(dòng)與在同一條直線上的初速
2、度等于零的勻加速直線運(yùn)動(dòng)的合運(yùn)動(dòng)是初速度等于的勻變速直線運(yùn)動(dòng)。
(2)互成角度的兩個(gè)直線運(yùn)動(dòng)的合運(yùn)動(dòng)[
通過課本P4的演示實(shí)驗(yàn)的變通總結(jié)以下的規(guī)律:
1、兩個(gè)分運(yùn)動(dòng)都是勻速直線運(yùn)動(dòng),其合運(yùn)動(dòng)也是勻速直線運(yùn)動(dòng)。
2、一個(gè)分運(yùn)動(dòng)是勻速直線運(yùn)動(dòng),另一個(gè)分運(yùn)動(dòng)是勻變速直線運(yùn)動(dòng),其合運(yùn)動(dòng)是一個(gè)勻變速曲線運(yùn)動(dòng)。反之,一個(gè)勻變速曲線運(yùn)動(dòng)也可分解為一個(gè)方向上的勻速直線運(yùn)動(dòng)和另一個(gè)方向上的勻變速直線運(yùn)動(dòng)——為研究復(fù)雜的曲線運(yùn)動(dòng)提供了一種方法。
3、初速度為零的兩個(gè)勻變速直線運(yùn)動(dòng)的合運(yùn)動(dòng)是一個(gè)初速度為零的勻變速直線運(yùn)動(dòng)。
總結(jié)規(guī)律:對(duì)于以上這些特例,我們可以通過圖示研究會(huì)更加簡(jiǎn)便。
具體做法:先將速
3、度進(jìn)行合成,再合成加速度,通過觀察合速度與合加速度的方向是否共線,進(jìn)而判定是直線運(yùn)動(dòng)還是曲線運(yùn)動(dòng)。
例1、關(guān)于運(yùn)動(dòng)的合成,下列說法中正確的是( BD )
A. 合運(yùn)動(dòng)的速度一定比每一個(gè)分運(yùn)動(dòng)的速度大
B. 兩個(gè)勻速直線運(yùn)動(dòng)的合運(yùn)動(dòng)一定是勻速直線運(yùn)動(dòng)(速度大小相等,方向相反除外)
C. 只要兩個(gè)分運(yùn)動(dòng)是直線運(yùn)動(dòng),那么它們的合運(yùn)動(dòng)也一定是直線運(yùn)動(dòng)
D. 兩個(gè)分運(yùn)動(dòng)的時(shí)間一定與它們合運(yùn)動(dòng)的時(shí)間相等
(3)互成角度的兩個(gè)直線運(yùn)動(dòng)的合運(yùn)動(dòng)的具體計(jì)算(課本P5)
1、蠟塊的位置的確定(建立坐標(biāo)系)
2、計(jì)算蠟塊對(duì)于原點(diǎn)的位移與時(shí)間的關(guān)系。
3、蠟塊的速度的確定
4、蠟塊運(yùn)動(dòng)的軌
4、跡
5、拓展(如蠟塊在水平方向做勻加速直線運(yùn)動(dòng)結(jié)果如何?)
例2、質(zhì)量為0.2 kg的物體,其速度在x、y方向的分量vx、vy與時(shí)間t的關(guān)系如圖所示,已知x、y方向相互垂直,則( AD )
A.0~4 s內(nèi)物體做曲線運(yùn)
B.0~6 s內(nèi)物體一直做曲線運(yùn)動(dòng)
C.0~4 s內(nèi)物體的位移為12 m
D.4~6 s內(nèi)物體的位移為2 m
三、運(yùn)動(dòng)的分解--------二個(gè)實(shí)例
(1)、牽連運(yùn)動(dòng)(約束運(yùn)動(dòng))類問題
1、牽連運(yùn)動(dòng)(約束運(yùn)動(dòng))是指物體間通過桿、繩連接而使運(yùn)動(dòng)互相關(guān)聯(lián).
2、處理牽連運(yùn)動(dòng)問題一般按以下步驟進(jìn)行:第一步:先確定合運(yùn)動(dòng):物體的實(shí)際運(yùn)動(dòng)就是合運(yùn)動(dòng);第二步:確定合運(yùn)動(dòng)
5、的兩個(gè)實(shí)際效果:一是沿牽引方向的平動(dòng)效果,改變速度的大?。欢谴怪庇跔恳较虻霓D(zhuǎn)動(dòng)效果,改變速度的方向;第三步:按平行四邊形法則進(jìn)行分解,作好運(yùn)動(dòng)矢量圖。
例3、在地面上勻速直線運(yùn)動(dòng)的汽車,通過定滑輪用繩子吊起一個(gè)物體,若汽車和被吊起物體在同一時(shí)刻的速度分別為v1和v2,v1=v,求
(1).兩繩夾角為θ時(shí),物體上升的速度?
(2).若汽車做勻速直線運(yùn)動(dòng)過程中,物體是加速上升還是減速上升?
(3).繩子對(duì)物體拉力F與物體所受重力mg的大小關(guān)系如何?
((1).V2=vsinθ (2).加速上升, (3).F>mg)
(2)、(小船、汽艇等)渡河問題
有關(guān)小船渡河問題是運(yùn)動(dòng)
6、的合成與分解一節(jié)中典型實(shí)例,難度較大。小船渡河問題往往設(shè)置兩種情況:(1)渡河時(shí)間最短;(2)渡河位移最短?,F(xiàn)將有關(guān)問題討論如下,
處理此類問題的方法常常有兩種:
(1)將船渡河問題看作水流的運(yùn)動(dòng)(水沖船的運(yùn)動(dòng))和船的運(yùn)動(dòng)(即設(shè)水不流動(dòng)時(shí)船的運(yùn)動(dòng))的合運(yùn)動(dòng)。
(2)將船的速度沿平行于河岸和垂直于河岸方向正交分解,如圖,為水流速度,則為船實(shí)際上沿水流方向的運(yùn)動(dòng)速度,為船垂直于河岸方向的運(yùn)動(dòng)速度。
問題1:渡河位移最短
河寬是所有渡河位移中最短的,但是否在任何情況下渡河位移最短的一定是河寬呢?下面就這個(gè)問題進(jìn)行如下討論:
(1)
要使渡河位移最小為河寬,只有使船垂直橫渡,則應(yīng),即,因
7、此只有,小船才能夠垂直河岸渡河,此時(shí)渡河的最短位移為河寬。渡河時(shí)間。
(2)
由以上分析可知,此時(shí)小船不能垂直河岸渡河。
以水流速度的末端A為圓心,小船的開航速度大小為半徑作圓,過O點(diǎn)作該圓的切線,交圓于B點(diǎn),此時(shí)讓船速與半徑AB平行,如圖所示,從而小船實(shí)際運(yùn)動(dòng)的速度(合速度)與垂直河岸方向的夾角最小,小船渡河位移最小。由相似三角形知識(shí)可得解得
渡河時(shí)間仍可以采用上面的方法[
(3)
此時(shí)小船仍不能垂直河岸渡河。由圖不難看出,船速與水速間的夾角越大,兩者的合速度越靠近垂直于河岸方向,即位移越小。但無法求解其最小值,只能定性地判斷出,船速與水速間的夾角越大,其位移越小而已。
(以上
8、處理方法類比力的分解中的處理方法)
問題2:渡河時(shí)間最短;
渡河時(shí)間的長(zhǎng)短同船速與水速間的大小關(guān)系無關(guān),它只取決于在垂直河岸方向上的速度。此方向上的速度越大,所用的時(shí)間就越短。因此,只有船的開航速度方向垂直河岸時(shí),渡河時(shí)間最短,即。
例4、如圖所示,一直河流的水速為,一小船在靜水中的劃速速率為,若這船在該河流中航行,要船從一岸到另一岸路程s最短,河寬用d表示,則有( AC)
A. 時(shí),s=d B. 時(shí),s=d
C. ,s=d D. 時(shí),s=d
例5、某人在靜水中劃行速度v1=1.8m/s,若他在水速v2=3m/s的河中勻速劃行。求:(1)他怎樣劃行才能使他在最短時(shí)間內(nèi)到達(dá)對(duì)岸?(2)若要使船的實(shí)際劃行軌跡最短,他應(yīng)該怎樣劃行?
解:(1)當(dāng)θ=90o時(shí),t最小,故當(dāng)船頭朝垂直河岸方向劃時(shí)過河時(shí)間最短。
(2)即劃行速度與上游河岸夾角為53時(shí),航程最短。
例6、某人在靜水中劃行速度v1=5m/s,若他在水速v2=3m/s的河中勻速劃行。求:(1)他怎樣劃行才能使他在最短時(shí)間內(nèi)到達(dá)對(duì)岸?(2)若要使船的實(shí)際劃行軌跡最短,他應(yīng)該怎樣劃行?