CJK6150數控車床設計-主軸箱和尾座部件
CJK6150數控車床設計-主軸箱和尾座部件,CJK6150數控車床設計-主軸箱和尾座部件,cjk6150,數控車床,設計,主軸,以及,部件
分 類 號
密 級
寧寧波大紅鷹學院
畢業(yè)設計(論文)
CJK6150數控車床設計-主軸箱和尾座部件
所在學院
專 業(yè)
班 級
姓 名
學 號
指導老師
年 月 日
誠 信 承 諾
我謹在此承諾:本人所寫的畢業(yè)設計(論文)《CJK6150數控車床設計-主軸箱和尾座部件》均系本人獨立完成,沒有抄襲行為,凡涉及其他作者的觀點和材料,均作了注釋,若有不實,后果由本人承擔。
承諾人(簽名):
年 月 日
摘 要
隨著當今工業(yè)設備對精密程度的要求越來越高,加工設備的機械加工設備的加工的精密程度也要求越來越高。在搜索、查閱研究大量有關資料的基礎上,對機床自動化技術進行了深入的研究和分析,并描述了機床控制系統的設計。整個過程主要對車床主傳動進行設計。
車床主傳動設計,主要包括三方面的設計,即:根據設計題目所給定的機床用途、規(guī)格、主軸極限轉速、轉速數列公比或級數,確定其他有關運動參數,選定主軸各級轉速值;通過分析比較,選擇傳動方案;擬定結構式或結構網,擬定轉速圖;確定齒輪齒數及帶輪直徑;繪制傳動系統圖。其次,根據機床類型和電動機功率,確定主軸及各傳動件的計算轉速,初定傳動軸直徑、齒輪模數,確定傳動帶型號及根數,摩擦片尺寸及數目;裝配草圖完成后要驗算傳動件(傳動軸、主軸、齒輪、滾動軸承)的剛度、強度或壽命。最后,完成運動設計和動力設計后,要將主傳動方案“結構化”,設計主軸變速箱裝配圖及零件圖,側重進行傳動軸組件、主軸組件、變速機構、箱體、潤滑與密封、傳動軸及滑移齒輪零件的設計。
關鍵詞:車床;數控;傳動系統
Abstract
With the industrial equipment for precision degree of the increasingly high demand, the degree of precision machining processing equipment of machining equipment also to request more and more high. In the search, a lot of related data access research of machine tool automation technology, in-depth research and analysis, and describes the design of machine tool control system. The whole process is mainly carries on the design to the main drive lathe.
CNC lathe main drive design, including the design, three aspects: according to the design of machine tool use, the given specifications, spindle speed limit, speed ratio determined sequence or series, other relevant motion parameters, selected at speed of the main shaft; through analysis and comparison, select the transmission scheme; develop structure or structure, develop speed diagram; to determine the number of gear teeth and belt pulley diameter; drawing drive system diagram. Secondly, based on the machine type and motor power, determining the spindle and the transmission of the computation speed, initial drive shaft diameter, the gear modulus, determine the transmission belt type and number of roots, friction plate size and number of assembly drawing; after checking transmission parts (gear, shaft, shaft, bearing stiffness,) strength or fatigue life. Finally, to complete the exercise design and dynamic design, to the main transmission scheme "structured", design of spindle gearbox assembly drawing and parts drawing, focuses on the transmission shaft assembly, spindle assembly, transmission mechanism, box, lubrication and seal, the transmission shaft and the sliding gear parts design.
Key Words: Lathe; CNC; Transmission System
目 錄
摘 要 3
Abstract 4
目 錄 6
第1章 緒 論 9
1.1 數控技術的應用與發(fā)展 9
1.1.1數控機床與發(fā)展趨勢 9
1.1.2數控技術 10
1.1.3數控技術發(fā)展趨勢 12
1.1.4數控技術在機械工業(yè)中的進展 14
1.2數控車床的工藝范圍及加工精度 15
1.2.1工藝范圍 15
1.2.2加工精度 15
1.3 畢業(yè)設計題目、主要技術參數和技術要求 16
1.3.1畢業(yè)設計題目和主要技術參數 16
1.3.2技術要求 16
第2章 主軸箱傳動系統參數計算 17
2.1運動參數及轉速圖的確定 17
2.1.1 轉速范圍 17
2.1.2 轉速數列 17
2.1.3確定結構式 17
2.1.4確定結構網 17
2.1.5繪制轉速圖和傳動系統圖 18
2.2 確定各變速組此論傳動副齒數 19
2.3 核算主軸轉速誤差 20
第3章 傳動件的計算 22
3.1 帶傳動設計 22
3.2選擇帶型 23
3.3確定帶輪的基準直徑并驗證帶速 23
3.4確定中心距離、帶的基準長度并驗算小輪包角 24
3.5確定帶的根數z 25
3.6確定帶輪的結構和尺寸 25
3.7確定帶的張緊裝置 25
3.8計算壓軸力 25
3.2 計算轉速的計算 27
3.3 齒輪模數計算及驗算 28
3.5 主軸合理跨距的計算 32
第4章 主要零部件的選擇 34
4.1電動機的選擇 34
4.2 軸承的選擇 34
4.3變速操縱機構的選擇 34
4.4 軸的校核 34
4.5 軸承壽命校核 36
第5章 主軸箱結構設計及說明 38
5.1 結構設計的內容、技術要求和方案 38
5.2 展開圖及其布置 38
第6章 尾座部分的設計 39
6.1尾座套筒的設計 39
6.2尾座體的設計 40
6.3尾座頂尖的設計 40
6.4液壓缸的設計 40
6.5尾座導軌的設計 41
6.6尾座孔系設計 42
6.6.1配合 42
6.6.2套筒孔的設計 42
6.6.3孔和鍵的設計 43
6.7撓度、轉角、液壓缸內徑、鎖緊力的計算及校核 43
6.7.1撓度的計算 44
6.7.2轉角的計算 45
6.7.3壓板處螺栓直徑的校核 45
6.7.4液壓缸內徑的校核 46
6.7.5尾座鎖緊力的驗算 46
第7章 尾座精度的設計 48
7.1表面粗糙度的確定 48
7.2尾座與機床形位公差的確定 48
7.3底面及立導向面形位公差的確定 49
總結 50
參考文獻 51
致謝 52
第1章 緒 論
第1章 緒 論
1.1 數控技術的應用與發(fā)展
1.1.1數控機床與發(fā)展趨勢
(1)數控機床:1946年誕生了世界上第一臺電子計算機,這表明人類創(chuàng)造了可增強和部分代替腦力勞動的工具。它與人類在農業(yè)、工業(yè)社會中創(chuàng)造的那些只是增強體力勞動的工具相比,起了質的飛躍,為人類進入信息社會奠定了基礎。
6年后,即在1952年,計算機技術應用到了機床上,在美國誕生了第一臺數控機床。從此,傳統機床產生了質的變化。近半個世紀以來,數控系統經歷了兩個階段和六代的發(fā)展。
①數控(NC)階段(1952~1970年)
早期計算機的運算速度低,對當時的科學計算和數據處理影響還不大,但不能適應機床實時控制的要求。人們不得不采用數字邏輯電路"搭"成一臺機床專用計算機作為數控系統,被稱為硬件連接數控(HARD-WIRED NC),簡稱為數控(NC)。隨著元器件的發(fā)展,這個階段歷經了三代,即1952年的第一代--電子管;1959年的第二代--晶體管;1965年的第三代--小規(guī)模集成電路。
②計算機數控(CNC)階段(1970年~現在)
到1970年,通用小型計算機業(yè)已出現并成批生產。于是將它移植過來作為數控系統的核心部件,從此進入了計算機數控(CNC)階段(把計算機前面應有的"通用"兩個字省略了)。到1971年,美國INTEL公司在世界上第一次將計算機的兩個最核心的部件--運算器和控制器,采用大規(guī)模集成電路技術集成在一塊芯片上,稱之為微處理器(MICROPROCESSOR),又可稱為中央處理單元(簡稱CPU)。
到1974年微處理器被應用于數控系統。這是因為小型計算機功能太強,控制一臺機床能力有富裕(故當時曾用于控制多臺機床,稱之為群控),不如采用微處理器經濟合理。而且當時的小型機可靠性也不理想。早期的微處理器速度和功能雖還不夠高,但可以通過多處理器結構來解決。由于微處理器是通用計算機的核心部件,故仍稱為計算機數控。
到了1990年,PC機(個人計算機,國內習慣稱微機)的性能已發(fā)展到很高的階段,可以滿足作為數控系統核心部件的要求。數控系統從此進入了基于PC的階段。
總之,計算機數控階段也經歷了三代。即1970年的第四代--小型計算機;1974年的第五代--微處理器和1990年的第六代--基于PC(國外稱為PC-BASED)。
還要指出的是,雖然國外早已改稱為計算機數控(即CNC)了,而我國仍習慣稱數控(NC)。所以我們日常講的"數控",實質上已是指"計算機數控"了。
1.1.2數控技術
隨著計算機、微電子、信息、自動控制、精密檢測及機械制造技術的高速發(fā)展,機床數控技術有了長足的進步。近幾年一些相關技術的發(fā)展,如刀具及新材料的發(fā)展,主軸伺服和進給伺服、超高速切削等技術的發(fā)展,以及對機械產品質量的要求越來越高等,加速了數控機床的發(fā)展。目前數控機床正朝著高速度、高精度、高工序集中度、高復合化和高可靠性等方向發(fā)展。世界數控技術及其裝備發(fā)展趨勢主要體現在以下幾個方面。
① 高速高效高精度
高生產率。由于數控裝置及伺服系統功能的改進,主軸轉速和進給速度大大提高,減少了切削時間和非切削時間。加工中心的進給速度已達到80m/min~120m/min,進給加速度達9.8m/s2~19.6m/s2,換刀時間小于1s。高加工精度。以前汽車零件精度的數量級通常為10 μm,對精密零件要求為1 μm,隨著精密產品的出現,對精度要求提高到0.1 μm,有些零件甚至已達到0.01 μm,高精密零件要求提高機床加工精度,包括采用溫度補償等。微機電加工,其加工零件尺寸大小一般在1mm 以下,表面粗糙度為納米數量級,要求數控系統能直接控制納米機床。
②柔性化
柔性化包括兩個方面的柔性:一是數控系統本身的柔性,數控系統采用模塊化設計,功能覆蓋面大,便于不同用戶的需求;二是DNC 系統的柔性,同一DNC系統能夠依據不同生產流程的要求,使物料流和信息流自動進行動態(tài)調整,從而最大限度地發(fā)揮DNC 系統的效能。
③工藝復合化和多軸化
數控機床的工藝復合化,是指工件在一臺機床上裝夾后,通過自動換刀、旋轉主軸頭或旋轉工作臺等各種措施,完成多工序、多表面的復合加工。已經出現了集鉆、鏜、銑功能于一身的數控機床,可完成鉆、鏜、銑、擴孔、鉸孔、攻螺紋等多工序的復合數控加工中心,以及車削加工中心,鉆削、磨削加工中心,電火花加工中心等。此外數控技術的進步也提供了多軸控制和多軸聯動控制功能。
④ 實時智能化
早期的實時系統通常針對相對簡單的理想環(huán)境,其作用是如何調度任務,以確保任務在規(guī)定期限內完成。而人工智能,則試圖用計算模型實現人類的各種智能行為。科學發(fā)展到今天,實時系統與人工智能已實現相互結合,人工智能正向著具有實時響應的更加復雜的應用領域發(fā)展,由此產生了實時智能控制這一新的領域。在數控技術領域,實時智能控制的研究和應用正沿著幾個主要分支發(fā)展,如自適應控制、模糊控制、神經網絡控制、專家控制、學習控制、前饋控制等。例如,在數控系統中配置編程專家系統、故障診斷專家系統、參數自動設定和刀具自動管理及補償等自適應調節(jié)系統;在高速加工時的綜合運動控制中引入提前預測和預算功能、動態(tài)前饋功能;在壓力、溫度、位置、速度控制等方面采用模糊控制,使數控系統的控制性能大大提高,從而達到最佳控制的目的。
⑤ 結構新型化
20 世紀90 年代一種完全不同于原來數控機床結構的新型數控機床被開發(fā)成功。這種新型數控機床被稱為“6條腿”的加工中心或稱虛擬軸機床(有的還稱為并聯機床),它能在沒有任何導軌和滑臺的情況下,采用能夠伸縮的“6條腿”(伺服軸)支撐并聯,并與安裝主軸頭的上平臺和安裝工件的下平臺相連。它可實現多坐標聯動加工,其控制系統結構復雜,加工精度、加工效率較普通加工中心高2~10 倍。這種數控機床的出現將給數控機床技術帶來重大變革和創(chuàng)新。
⑥ 編程技術自動化
隨著數控加工技術的迅速發(fā)展,設備類型的增多,零件品種的增加以及零件形狀的日益復雜,迫切需要速度快、精度高的編程,以便于對加工過程的直觀檢查。為彌補手工編程和NC 語言編程的不足,近年來開發(fā)出多種自動編程系統,如圖形交互式編程系統、數字化自動編程系統、會話式自動編程系統、語音數控編程系統等,其中圖形交互式編程系統的應用越來越廣泛。圖形交互式編程系統是以計算機輔助設計(CAD)軟件為基礎,首先形成零件的圖形文件,然后再調用數控編程模塊,自動編制加工程序,同時可動態(tài)顯示刀具的加工軌跡。其特點是速度快、精度高、直觀性好、使用簡便,已成為國內外先進的CAD/CAM 軟件所采用的數控編程方法。目前常用的圖形交互式軟件有Master CAM、Cimatron、Pro/E、UG、CAXA、Solid Works、CATIA等。
⑦ 集成化
數控系統采用高度集成化芯片,可提高數控系統的集成度和軟、硬件運行速度,應用平板顯示技術可提高顯示器性能。平板顯示器(FPD)具有科技含量高、質量小、體積小、功耗低、便于攜帶等優(yōu)點,可實現超大規(guī)模顯示,成為與CRT 顯示器抗衡的新興顯示器,是21 世紀顯示器主流。它應用先進封裝和互連技術,將半導體和表面安裝技術融于一體,通過提高集成電路密度,減小互連長度和數量來降低產品價格、改進性能、減小組件尺寸、提高系統的可靠性。
⑧ 開放式閉環(huán)控制模式
采用通用計算機組成的總線式、模塊化、開放、嵌入式體系結構,便于裁減、擴展和升級,可組成不同檔次、不同類型、不同集成程度的數控系統。閉環(huán)控制模式是針對傳統數控系統僅有的專用型封閉式開環(huán)控制模式提出的。由于制造過程是一個有多變量控制和加工工藝綜合作用的復雜過程,包括諸如加工尺寸、形狀、振動、噪聲、溫度和熱變形等各種變化因素,因此,要實現加工過程的多目標優(yōu)化,必須采用多變量的閉環(huán)控制,在實時加工過程中動態(tài)調整加工過程變量。在加工過程中采用開放式通用型實時動態(tài)全閉環(huán)控制模式,易于將計算機實時智能技術、多媒體技術、網絡技術、CAD/CAM、伺服控制、自適應控制、動態(tài)數據管理及動態(tài)刀具補償、動態(tài)仿真等高新技術融于一體,構成嚴密的制造過程閉環(huán)控制體系,從而實現集成化、智能化、網絡化。
1.1.3數控技術發(fā)展趨勢
(1)數控技術裝備工業(yè)的技術水平和現代化程度決定著整個國民經濟的水平和現代化程度,數控技術及裝備是發(fā)展新興高新技術產業(yè)和尖端工業(yè)(如信息技術及其產業(yè)、生物技術及其產業(yè)、航空、航天等國防工業(yè)產業(yè))的使能技術和最基本的裝備。馬克思曾經說過“各種經濟時代的區(qū)別,不在于生產什么,而在于怎樣生產,用什么勞動資料生產”。制造技術和裝備就是人類生產活動的最基本的生產資料,而數控技術又是當今先進制造技術和裝備最核心的技術。當今世界各國制造業(yè)廣泛采用數控技術,以提高制造能力和水平,提高對動態(tài)多變市場的適應能力和競爭能力。此外世界上各工業(yè)發(fā)達國家還將數控技術及數控裝備列為國家的戰(zhàn)略物資,不僅采取重大措施來發(fā)展自己的數控技術及其產業(yè),而且在“高精尖”數控關鍵技術和裝備方面對我國實行封鎖和限制政策??傊?,大力發(fā)展以數控技術為核心的先進制造技術已成為世界各發(fā)達國家加速經濟發(fā)展、提高綜合國力和國家地位的重要途徑。
數控技術是用數字信息對機械運動和工作過程進行控制的技術,數控裝備是以數控技術為代表的新技術對傳統制造產業(yè)和新興制造業(yè)的滲透形成的機電一體化產品,即所謂的數字化裝備,其技術范圍覆蓋很多領域:(1)機械制造技術;(2)信息處理、加工、傳輸技術;(3)自動控制技術;(4)伺服驅動技術:(5)傳感器技術:(6)軟件技術等。
(2)數控技術的發(fā)展趨勢
數控技術的應用不但給傳統制造業(yè)帶來了革命性的變化,使制造業(yè)成為工業(yè)化的象征,而且隨著數控技術的不斷發(fā)展和應用領域的擴大,他對國計民生的一些重要行業(yè)(IT、汽車、輕工、醫(yī)療等)的發(fā)展起著越來越重要的作用,因為這些行業(yè)所需裝備的數字化已是現代發(fā)展的大趨勢。從目前世界上數控技術及其裝備發(fā)展的趨勢來看,其主要研究熱點有以下幾個方面。
①高速、高精加工技術是裝備的新趨勢
效率、質量是先進制造技術的主體。高速、高精加工技術可極大地提高效率,提高產品的質量和檔次,縮短生產周期和提高市場競爭能力。為此日本先端技術研究會將其列為5大現代制造技術之一,國際生產工程學會(CIRP)將其確定21世紀的中心研究方向之一。
在轎車工業(yè)領域,年產30萬輛的生產節(jié)拍是40秒/輛,而且多品種加工是轎車裝備必須解決的重點問題之一;在航空和宇航工業(yè)領域,其加工的零部件多為薄壁和薄筋,剛度很差,材料為鋁或鋁合金,只有在高切削速度和切削力很小的情況下,才能對這些筋、壁進行加工。近來采用大型整體鋁合金坯料“掏空”的方法來制造機翼、機身等大型零件來替代多個零件通過眾多的鉚釘、螺釘和其他聯結方式拼裝,使構件的強度、剛度和可靠性得到提高。這些都對加工裝備提出了高速、高精和高柔性的要求。
目前高速加工中心進給速度可達80m/min,甚至更高,空運行速度可達100m/min左右。目前世界上許多汽車廠,包括我國的上海通用汽車公司,己經采用以高速加工中心組成的生產線部分替代組合機床。美國CINCINNAT工公司的HyperMach機床進給速度最大達60m/min,快速為100m/min,加速度達2g,主軸轉速已達60000r/min。加工一薄壁飛機零件,只用30min,而同樣的零件在一般高速銑床加工需3h,在普通銑床加工需8h;德國DMG公司的雙主軸車床的主軸速度及加速度分別達12000r/mm
在加工精度方面,近10年來,普通級數控機床的加工精度已由l0um提高到5} m,精密級加工中心則從3}5um,提高到1一1.5}m,并且超精密加工精度已開始進入納米級。
在可靠性方面,國外數控裝置的MTBF值己達6000h以上,伺服系統的MTBF值達到30000h以上,表現出非常高的可靠性。為了實現高速、高精加工,與之配套的功能部件如電主軸、直線電機得到
了快速的發(fā)展,應用領域進一步擴大。
②智能化、開放式、網絡化成為當代數控系統發(fā)展的主要趨勢
21世紀的數控裝備將是具有一定智能化的系統,智能化的內容包括在數控系統中的各個方面:為追求加工效率和加工質量方面的智能化,如加工過程的自適應控制,工藝參數自動生成;為提高驅動性能及使用連接方便的智能化,如前饋控制、電機參數的自適應運算、自動識別負載自動選定模型、自整定等;簡化編程、簡化操作方面的智能化,如智能化的自動編程、智能化的人機界面等;還有智能診斷、智能監(jiān)控方面的內容、方便系統的診斷及維修等。
③數控設備更注重安全性、操作性
數控設備是集機電一體化的產品,由于其自動化程度高,所以對其安全性和可操作性有了更高的要求。
1.1.4數控技術在機械工業(yè)中的進展
近年來我國企業(yè)的數控機床占有率逐年上升,在大中企業(yè)已有較多
的使用,在中小企業(yè)甚至個體企業(yè)中也普遍開始使用。
2001年國內數控金切機床產量已達1. 8萬臺,比上年增長28. 5%,機床行業(yè)產值數控化率從2000年的17. 4%提高到2001年的22. 7%。
2001年,我國機床工業(yè)產值己進入世界第5名,機床消費額在世界
排名上升到第3位,達47. 39億美元,僅次于美國的53. 67億美元,消費
額比上一年增長25%。但由于國產數控機床不能滿足市場的需求,使我國機床的進口額呈逐年上升態(tài)勢,2001年進口機床躍升至世界第2位,達24. 06億美元,比上年增長27%。
近年來我國出口額增幅較大的數控機床有數控車床、數控磨床、數控特種加工機床、數控剪板機、數控成形折彎機、數控壓鑄機等,普通機床有鉆床、鋸床、插床、拉床、組合機床、液壓壓力機、木工機床等。出口的數控機床品種以中低檔為主。
1.2數控車床的工藝范圍及加工精度
1.2.1工藝范圍
數控車床是一種高精度、高效率的自動化機床,也是使用數量最多的數控機床,約占數控機床總數的25%。它主要用于精度要求高、表面粗糙度好、輪廓形狀復雜的軸類、盤類等回轉體零件的加工,能夠通過程序控制自動完成園柱面、圓錐面、圓弧面和各種螺紋的切削加工,并能進行切槽、鉆孔、擴孔、鉸孔等加工。
1.2.2加工精度
由于數控車床具有加工精度高、能作直線和圓弧插補功能,有些數控車床還具有非圓曲線插補功能以及加工過程中具有自動變速功能等特點,所以它的工藝范圍要比普通車床要寬得多。
1.精度要求高的回轉體零件
由于數控車床剛性好,制造和對刀精度高,以及能方便和精確地進行人工補償和自動補償,所以能加工精度要求高的零件,甚至可以以車代磨。
2.表面粗糙度要求高的回轉體零件
數控車床具有恒線速切削功能,能加工出表面粗糙度小的均勻的零件。使用恒線速切削功能,就可選用最佳速度來切削錐面和端面,使切削后的工件表面粗糙度既小又一致。數控車床還適合加工各表面粗糙度要求不同的工件。粗糙度要求大的部位選用較大的進給量,要求小的部位選用小的進給量。
3.輪廓形狀特別復雜和難于控制尺寸的回轉體零件
由于數控車床具有直線和圓弧插補功能,部分車床數控裝置還有某些非圓曲線和平面曲線插補功能,所以可以加工形狀特別復雜或難于控制尺寸的的回轉體零件。
4.帶特殊螺紋的回轉體零件
普通車床所能車削的螺紋類型相當有限,它只能車等導程的直、錐面公、英制螺紋,而且一臺車床只能限定加工若干導程的螺紋。而數控車床不但能車削任何等導程的直、錐面螺紋和端面螺紋,而且能車變螺距螺紋,還可以車高精度螺紋。
1.3 畢業(yè)設計題目、主要技術參數和技術要求
1.3.1畢業(yè)設計題目和主要技術參數
技術參數:床身最大回轉直徑:500mm,拖板最大回轉直徑:≥250mm,最大加工長度:750mm,主軸轉速:90~2000r/min,縱向進給最大速度:4m/min,橫向進給最大速度:4m/min。主電機功率5.5Kw。
1.3.2技術要求
(1)利用電動機完成換向和制動。
(2)各滑移齒輪塊采用單獨操縱機構。
(3)進給傳動系統采用單獨電動機驅動。
53
第2章 主軸箱傳動系統參數計算
第2章 主軸箱傳動系統參數計算
2.1運動參數及轉速圖的確定
2.1.1 轉速范圍
根據【1】公式(3-2)因為已知 ,,=1.41
∴Z=+1=10
根據【1】表3-5 標準公比。這里我們取標準公比系列=1.41
2.1.2 轉速數列
轉速數列。因為=1.41=1.066,根據【1】表3-6標準數列。首先找到最小極限轉速45,再每跳過5個數取一個轉速,即可得到公比為1.41的數列: 90,125,180,250,355,500,710,1000,1400,2000
2.1.3確定結構式
對于Z=10可以按照Z=12來定
實現12級主軸轉速變化的傳動系統可以寫成多種傳動副組合:
12=3×4 12=4×3
12=3×2×2 12=2×3×2 12=2×2×3
12=2×3×2。
在上列兩行方案中,第一行的方案有時可以節(jié)省一根傳動軸,缺點是有一個傳動組內有四個傳動副。如用一個四聯滑移齒輪,則會增加軸向尺寸;如果用兩個雙聯滑移齒輪,操縱機構必須互鎖以防止兩個雙聯滑移齒輪同時嚙合,所以少用。
根據傳動副數目分配應“前多后少”的原則,方案12=3×2×2是可取的。但是,由于主軸換向采用雙向離合器結構,致使Ⅰ軸尺寸加大,此方案也不宜采用,而應選用方案12=2×3×2。
2.1.4確定結構網
12=2×3×2的傳動副組合,其傳動組的擴大順序又可以有以下6種形式:
A、12=21×32×26 B、12=21×34×22
C、12 =23×31×26 D、12=26×31×23
E、12=22×34×21 F、12=26×32×21
根據“前多后少”,“先降后升”,前密后疏,結構緊湊的原則, 選取傳動方案 Z=12=23×31×26其結構網如圖2-1。已知該題設選用電機為二級調速電機,其分攤了0-1級的2個級別的變速。
圖2-1結構網
2.1.5繪制轉速圖和傳動系統圖
(1)選擇電動機:采用Y系列封閉自扇冷式鼠籠型三相異步電動機。
(2)繪制轉速圖:
轉速圖
(3)畫主傳動系統圖。根據系統轉速圖及已知的技術參數,
畫主傳動系統圖如圖2-3,
1-2軸最小中心距:A1_2min>1/2(Zmaxm+2m+D)
軸最小齒數和:Szmin>(Zmax+2+D/m)
2.2 確定各變速組此論傳動副齒數
(1)Sz100-130,中型機床Sz=70-100
(2)直齒圓柱齒輪Zmin18-20
圖2-3 主傳動系統圖
(7)齒輪齒數的確定。據設計要求Zmin≥18—20,齒數和Sz≤130,由表4.1,根據各變速組公比,可得各傳動比和齒輪齒數,各齒輪齒數如表2-2。
表2-2 齒輪齒數
傳動比
基本組
第一擴大組
第二擴大組
1.41:1
1:2
1.41:1
1:1
1:1.41
2:1
1:2
代號
Z
Z
Z
Z
Z
Z
Z
Z
Z5
Z
Z6
Z6
Z7
Z7
齒數
47
34
27
54
41
29
35
35
29
41
87
43
43
87
2.3 核算主軸轉速誤差
實際傳動比所造成的主軸轉速誤差,一般不應超過±10(-1)%,即
〈10(-1)%
對Nmax=2000r/min,實際轉速Nmax=1440×××=1890r/min
則有:
=0.9%〈4.1%
同理,因此滿足要求。
各級轉速誤差轉速誤差都小于4.1%,因此不需要修改齒數。
第3章 傳動件的計算
第3章 傳動件的計算
3.1 帶傳動設計
輸出功率P=5.5kW,轉速n1=1440r/min,n2=500r/min
計算設計功率Pd
表4 工作情況系數
工作機
原動機
ⅰ類
ⅱ類
一天工作時間/h
10~16
10~16
載荷
平穩(wěn)
液體攪拌機;離心式水泵;通風機和鼓風機();離心式壓縮機;輕型運輸機
1.0
1.1
1.2
1.1
1.2
1.3
載荷
變動小
帶式運輸機(運送砂石、谷物),通風機();發(fā)電機;旋轉式水泵;金屬切削機床;剪床;壓力機;印刷機;振動篩
1.1
1.2
1.3
1.2
1.3
1.4
載荷
變動較大
螺旋式運輸機;斗式上料機;往復式水泵和壓縮機;鍛錘;磨粉機;鋸木機和木工機械;紡織機械
1.2
1.3
1.4
1.4
1.5
1.6
載荷
變動很大
破碎機(旋轉式、顎式等);球磨機;棒磨機;起重機;挖掘機;橡膠輥壓機
1.3
1.4
1.5
1.5
1.6
1.8
根據V帶的載荷平穩(wěn),兩班工作制(16小時),查《機械設計》P296表4,
取KA=1.1。即
3.2選擇帶型
普通V帶的帶型根據傳動的設計功率Pd和小帶輪的轉速n1按《機械設計》P297圖13-11選取。
根據算出的Pd=6.05kW及小帶輪轉速n1=1440r/min ,查圖得:dd=80~100可知應選取A型V帶。
3.3確定帶輪的基準直徑并驗證帶速
由《機械設計》P298表13-7查得,小帶輪基準直徑為80~100mm
則取dd1=100mm> ddmin.=75 mm(dd1根據P295表13-4查得)
表3 V帶帶輪最小基準直徑
槽型
Y
Z
A
B
C
D
E
20
50
75
125
200
355
500
由《機械設計》P295表13-4查“V帶輪的基準直徑”,得=250mm
① 誤差驗算傳動比: (為彈性滑動率)
誤差 符合要求
② 帶速
滿足5m/s300mm,所以宜選用E型輪輻式帶輪。
總之,小帶輪選H型孔板式結構,大帶輪選擇E型輪輻式結構。
帶輪的材料:選用灰鑄鐵,HT200。
3.7確定帶的張緊裝置
選用結構簡單,調整方便的定期調整中心距的張緊裝置。
3.8計算壓軸力
由《機械設計》P303表13-12查得,A型帶的初拉力F0=130.59N,上面已得到=153.36o,z=6,則
對帶輪的主要要求是質量小且分布均勻、工藝性好、與帶接觸的工作表面加工精度要高,以減少帶的磨損。轉速高時要進行動平衡,對于鑄造和焊接帶輪的內應力要小, 帶輪由輪緣、腹板(輪輻)和輪轂三部分組成。帶輪的外圈環(huán)形部分稱為輪緣,輪緣是帶輪的工作部分,用以安裝傳動帶,制有梯形輪槽。由于普通V帶兩側面間的夾角是40°,為了適應V帶在帶輪上彎曲時截面變形而使楔角減小,故規(guī)定普通V帶輪槽角 為32°、34°、36°、38°(按帶的型號及帶輪直徑確定),輪槽尺寸見表7-3。裝在軸上的筒形部分稱為輪轂,是帶輪與軸的聯接部分。中間部分稱為輪幅(腹板),用來聯接輪緣與輪轂成一整體。
表 普通V帶輪的輪槽尺寸(摘自GB/T13575.1-92)
項目
?
符號
槽型
Y
Z
A
B
C
D
E
基準寬度
b p
5.3
8.5
11.0
14.0
19.0
27.0
32.0
基準線上槽深
h amin
1.6
2.0
2.75
3.5
4.8
8.1
9.6
基準線下槽深
h fmin
4.7
7.0
8.7
10.8
14.3
19.9
23.4
槽間距
e
8 ± 0.3
12 ± 0.3
15 ± 0.3
19 ± 0.4
25.5 ± 0.5
37 ± 0.6
44.5 ± 0.7
第一槽對稱面至端面的距離
f min
6
7
9
11.5
16
23
28
最小輪緣厚
5
5.5
6
7.5
10
12
15
帶輪寬
B
B =( z -1) e + 2 f ? z —輪槽數
外徑
d a
輪 槽 角
32°
對應的基準直徑 d d
≤ 60
-
-
-
-
-
-
34°
-
≤ 80
≤ 118
≤ 190
≤ 315
-
-
36°
60
-
-
-
-
≤ 475
≤ 600
38°
-
> 80
> 118
> 190
> 315
> 475
> 600
極限偏差
± 1
± 0.5
V帶輪按腹板(輪輻)結構的不同分為以下幾種型式:
(1) 實心帶輪:用于尺寸較小的帶輪(dd≤(2.5~3)d時),如圖7 -6a。
(2) 腹板帶輪:用于中小尺寸的帶輪(dd≤ 300mm 時),如圖7-6b。
(3) 孔板帶輪:用于尺寸較大的帶輪((dd-d)> 100 mm 時),如圖7 -6c 。
(4) 橢圓輪輻帶輪:用于尺寸大的帶輪(dd> 500mm 時),如圖7-6d。
(a) (b) (c) (d)
圖7-6 帶輪結構類型
根據設計結果,可以得出結論:小帶輪選擇實心帶輪,如圖(a),大帶輪選擇腹板帶輪如圖(b)
3.2 計算轉速的計算
(1).主軸的計算轉速
由表3-2中的公式
=90 =200.64r/min
結合變速數據 取主軸的計算轉速為180r/min
(2). 傳動軸的計算轉速
在轉速圖上,軸Ⅲ在最低轉速90r/min時經過傳動組傳動副,。這個轉速高于主軸計算轉速,在恒功率區(qū)間內,因此軸Ⅲ的最低轉速為該軸的計算轉速即nⅢj=355/min,軸Ⅰ計算轉速為=500 r/min
(2)確定各傳動軸的計算轉速
由機械設計知識可知,一對嚙合齒輪只需要校核危險的小齒輪,因此只需求出危險小齒輪的計算轉速這轉速都在恒功率區(qū)間內,即都要求傳遞最大功率所以齒輪Z38的計算轉速為這3轉速的最小值即=355r/min
各計算轉速入表3-1。
表3-1 各軸計算轉速
軸 號
Ⅰ 軸
Ⅱ 軸
Ⅲ 軸
計算轉速 r/min
500
250
355
(3) 確定齒輪副的計算轉速。齒輪裝在主軸其中只有180r/min傳遞全功率,故Zj=180r/min。依次可以得出其余齒輪的計算轉速,如表3-2。
表3-2 齒輪副計算轉速
序號
Z
Z
Z
Z
n
500
500
250
355
3.3 齒輪模數計算及驗算
模數計算,一般同一變速組內的齒輪取同一模數,選取負荷最重的小齒輪,按簡化的接觸疲勞強度公式進行計算,即mj=16338可得各組的模數,如表3-3所示。
45號鋼整體淬火,
按接觸疲勞計算齒輪模數m
1軸由公式mj=16338可得mj=2.34mm,取m=3mm
2軸由公式mj=16338可得mj=2.31mm,取m=3mm
3軸由公式mj=16338可得mj=3.21mm,取m=3.5mm
由于一般同一變速組內的齒輪盡量取同一模數,所以為了統一和方便如下?。?
表3-3 模數
組號
基本組
第一擴大組
第二擴大組
模數 mm
3
3
3.5
(2)基本組齒輪計算。
基本組齒輪幾何尺寸見下表
齒輪
Z1
Z1`
Z2
Z2`
齒數
47
34
27
54
分度圓直徑
141
102
81
162
齒頂圓直徑
147
108
87
168
齒根圓直徑
133.5
94.5
73.5
154.5
齒寬
24
24
24
24
按基本組最小齒輪計算。小齒輪用40Cr,調質處理,硬度241HB~286HB,平均取260HB,大齒輪用45鋼,調質處理,硬度229HB~286HB,平均取240HB。計算如下:
① 齒面接觸疲勞強度計算:
接觸應力驗算公式為
彎曲應力驗算公式為:
式中 N----傳遞的額定功率(kW),這里取N為電動機功率,N=4kW;
-----計算轉速(r/min). =160(r/min);
m-----初算的齒輪模數(mm), m=3(mm);
B----齒寬(mm);B=24(mm);
z----小齒輪齒數;z=27;
u----小齒輪齒數與大齒輪齒數之比,u=1.78;
-----壽命系數;
=
----工作期限系數;
T------齒輪工作期限,這里取T=15000h.;
-----齒輪的最低轉速(r/min), =500(r/min)
----基準循環(huán)次數,接觸載荷取=,彎曲載荷取=
m----疲勞曲線指數,接觸載荷取m=3;彎曲載荷取m=6;
----轉速變化系數,查【5】2上,取=0.60
----功率利用系數,查【5】2上,取=0.78
-----材料強化系數,查【5】2上, =0.60
-----工作狀況系數,取=1.1
-----動載荷系數,查【5】2上,取=1
------齒向載荷分布系數,查【5】2上,=1
Y------齒形系數,查【5】2上,Y=0.386;
----許用接觸應力(MPa),查【4】,表4-7,取=650 Mpa;
---許用彎曲應力(MPa),查【4】,表4-7,取=275 Mpa;
根據上述公式,可求得及查取值可求得:
=635 Mpa
=78 Mpa
(3)第一擴大組齒輪計算。
第一擴大組齒輪幾何尺寸見下表
齒輪
Z3
Z3`
Z4
Z4`
Z5
Z5`
齒數
41
29
35
35
29
41
分度圓直徑
123
87
105
105
87
123
齒頂圓直徑
129
93
111
111
93
129
齒根圓直徑
115
79.5
97.5
97.5
79.5
115
齒寬
24
24
24
24
24
24
按擴大組最小齒輪計算。小齒輪用40Cr,調質處理,硬度241HB~286HB,平均取260HB,大齒輪用45鋼,調質處理,硬度229HB~286HB,平均取240HB。
同理根據基本組的計算,
查文獻【6】,可得 =0.62, =0.77,=0.60,=1.1,
=1,=1,m=3,=355;
可求得:
=619 Mpa
=135Mpa
(3)第二擴大組齒輪計算。
第二擴大組齒輪幾何尺寸見下表
齒輪
Z6
Z6`
Z7
Z7`
齒數
87
43
43
87
分度圓直徑
304.5
150.5
150.5
304.5
齒頂圓直徑
311.5
157.5
157.5
311.5
齒根圓直徑
297.75
141.75
141.75
297.75
齒寬
28
28
28
28
按擴大組最小齒輪計算。小齒輪用40Cr,調質處理,硬度241HB~286HB,平均取260HB,大齒輪用45鋼,調質處理,硬度229HB~286HB,平均取240HB。
同理根據基本組的計算,
查文獻【6】,可得 =0.62, =0.77,=0.60,=1.1,
=1,=1,m=3,=355;
可求得:
=619 Mpa
=135Mpa
3.5 主軸合理跨距的計算
主軸:選擇主軸前端直徑,后端直徑
對于普通車床,主軸內孔直徑,故本例之中,主軸內孔直徑取為
支承形式選擇兩支撐,初取懸伸量,支撐跨距。
選擇平鍵連接,
由于電動機功率P=4KW,根據【1】表3.20,前軸徑應為60~90mm。初步選取d1=80mm。后軸徑的d2=(0.7~0.9)d1,取d2=60mm。根據設計方案,前軸承為NN3016K型,后軸承為圓錐滾子軸承。定懸伸量a=120mm,主軸孔徑為30mm。
軸承剛度,主軸最大輸出轉矩T=9550=9550×=424.44N.m
假設該機床為車床的最大加工直徑為300mm。床身上最常用的最大加工直徑,即經濟加工直徑約為最大回轉直徑的50%,這里取60%,即180mm,故半徑為0.09m;
切削力(沿y軸) Fc==4716N
背向力(沿x軸) Fp=0.5 Fc=2358N
總作用力 F==5272.65N
此力作用于工件上,主軸端受力為F=5272.65N。
先假設l/a=2,l=3a=240mm。前后支承反力RA和RB分別為
RA=F×=5272.65×=7908.97N
RB=F×=5272.65×=2636.325N
根據 文獻【1】式3.7 得:Kr=3.39得前支承的剛度:KA= 1689.69 N/ ;KB= 785.57 N/;==2.15
主軸的當量外徑de=(80+60)/2=70mm,故慣性矩為
I==113.8×10-8m4
η===0.14
查【1】圖3-38 得 =2.0,與原假設接近,所以最佳跨距=120×2.0=240mm
合理跨距為(0.75-1.5),取合理跨距l(xiāng)=360mm。
根據結構的需要,主軸的實際跨距大于合理跨距,因此需要采取措施
增加主軸的剛度,增大軸徑:前軸徑D=100mm,后軸徑d=80mm。前軸承
采用雙列圓柱滾子軸承,后支承采用背對背安裝的角接觸球軸承。
第4章 主要零部件的選擇
第4章 主要零部件的選擇
4.1電動機的選擇
轉速n=1440r/min,功率P=5.5kW
選用Y系列三相異步電動機
4.2 軸承的選擇
I軸:與帶輪靠近段安裝雙列角接觸球軸承代號7007C 另一安裝深溝球軸承6012
II軸:對稱布置深溝球軸承6009
III軸:后端安裝雙列角接觸球軸承代號7015C
另一安裝端角接觸球軸承代號7010C
中間布置角接觸球軸承代號7012C
4.3變速操縱機構的選擇
選用左右擺動的操縱桿使其通過桿的推力來控制II軸上的三聯滑移齒輪和二聯滑移齒輪。
4.4 軸的校核
(a) 主軸的前端部撓度
(b) 主軸在前軸承處的傾角
(c) 在安裝齒輪處的傾角
E取為,
,
由于小齒輪的傳動力大,這里以小齒輪來進行計算
將其分解為垂直分力和水平分力
由公式
可得
主軸載荷圖如下所示:
由上圖可知如下數據:a=364mm,b=161mm,l=525mm,c=87mm
計算(在垂直平面)
,,
,,
,,
計算(在水平面)
,,
,,
,,
合成:
4.5 軸承壽命校核
由П軸最小軸徑可取軸承為7008C角接觸球軸承,ε=3;P=XFr+YFaX=1,Y=0。
對Ⅱ軸受力分析
得:前支承的徑向力Fr=2642.32N。
由軸承壽命的計算公式:預期的使用壽命 [L10h]=15000h
L10h=×=×=h≥[L10h]=15000h
軸承壽命滿足要求。
第5章 主軸箱結構設計及說明
5.1 結構設計的內容、技術要求和方案
設計主軸變速箱的結構包括傳動件(傳動軸、軸承、帶輪、齒輪、離合器和制動器等)、主軸組件、操縱機構、潤滑密封系統和箱體及其聯結件的結構設計與布置,用一張展開圖和若干張橫截面圖表示。畢業(yè)設計由于時間的限制,一0般只畫展開圖。
主軸變速箱是機床的重要部件。設計時除考慮一般機械傳動的有關要求外,著重考慮以下幾個方面的問題。
精度方面的要求,剛度和抗震性的要求,傳動效率要求,主軸前軸承處溫度和溫升的控制,結構工藝性,操作方便、安全、可靠原則,遵循標準化和通用化的原則。
主軸變速箱結構設計時整個機床設計的重點,由于結構復雜,設計中不可避免要經過反復思考和多次修改。在正式畫圖前應該先畫草圖。目的是:
1 布置傳動件及選擇結構方案。
2 檢驗傳動設計的結果中有無干涉、碰撞或其他不合理的情況,以便及時改正。
3 確定傳動軸的支承跨距、齒輪在軸上的位置以及各軸的相對位置,以確
定各軸的受力點和受力方向,為軸和軸承的驗算提供必要的數據。
5.2 展開圖及其布置
展開圖就是按照傳動軸傳遞運動的先后順序,假想將各軸沿
收藏