2019-2020年中考數學復習 考點跟蹤突破15 銳角三角函數和解直角三角形.doc
《2019-2020年中考數學復習 考點跟蹤突破15 銳角三角函數和解直角三角形.doc》由會員分享,可在線閱讀,更多相關《2019-2020年中考數學復習 考點跟蹤突破15 銳角三角函數和解直角三角形.doc(4頁珍藏版)》請在裝配圖網上搜索。
2019-2020年中考數學復習 考點跟蹤突破15 銳角三角函數和解直角三角形 一、選擇題 1.(xx麗水)如圖,點A為∠α邊上的任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示cosα的值,錯誤的是( C ) A. B. C. D. ,第1題圖) ,第2題圖) 2.(xx山西)如圖,在網格中,小正方形的邊長均為1,點A,B,C都在格點上,則∠ABC的正切值是( D ) A.2 B. C. D. 3.三角函數sin50,cos50,tan50的大小關系是( C ) A.sin50>cos50>tan50 B.tan50>cos50>sin50 C.tan50>sin50>cos50 D.cos50>tan50>sin50 4.在Rt△ACB中,∠C=90,AB=10,sinA=,cosA=,tanA=,則BC的長為( A ) A.6 B.7.5 C.8 D.12.5 5.(xx創(chuàng)新題)如圖是攔水壩的橫斷面,斜坡AB的水平寬度為12米,斜面坡度為1∶2,則斜坡AB的長為( B ) A.4米 B.6米 C.12米 D.24米 二、填空題 6.(xx臨沂)如圖,在?ABCD中,連接BD,AD⊥BD,AB=4,sinA=,則?ABCD的面積是__3__. ,第6題圖) ,第7題圖) 7.如圖,為了測量河兩岸A,B兩點的距離,在與AB垂直的方向點C處測得AC=400 m,∠ACB=α,那么AB等于__400tanα__.(用含α的三角函數表示) 8.(xx邵陽)如圖,某登山運動員從營地A沿坡角為30的斜坡AB到達山頂B,如果AB=xx米,則他實際上升了__1000__米. ,第8題圖) ,第9題圖) 9.(xx天門)如圖,兩個高度相等且底面直徑之比為1∶2的圓柱形水杯,甲杯裝滿液體,乙杯是空杯,若把甲杯中的液體全部倒入乙杯,則乙杯中的液面與圖中點P的距離是__6__cm. 點撥:把甲杯中的液體全部倒入乙杯,設此時乙杯中的液面高x cm.∵甲液體的體積等于液體在乙中的體積,∴即π(2)216=π(4)2x,解得x=4,在直角三角形中,已知一直角邊為4,斜邊即是8,∴另一直角邊就是12,∴根據三角形的面積公式可知直角三角形的斜邊上的高是6,所以乙杯中的液面與圖中點P的距離是16-6-4=6(cm) 三、解答題 10.(xx安徽)如圖,平臺AB高為12 m,在B處測得樓房CD頂部點D的仰角為45,底部點C的俯角為30,求樓房CD的高度.(結果保留根號) 解:12+12 11.(xx荊門)如圖,在一次軍事演習中,藍方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60方向前進實施攔截,紅方行駛1000米到達C處后,因前方無法通行,紅方決定調整方向,再朝南偏西45方向前進了相同的距離,剛好在D處成功攔截藍方,求攔截點D處到公路的距離.(結果保留根號) 解:(500+500)米 12.(xx浙江模擬)已知,如圖,斜坡BQ坡度i=5∶12(即為QC與BC的長度之比),在斜坡BQ上有一棵香樟樹PQ,柳明在A處測得樹頂點P的仰角為α,并且測得水平的AB=8米,另外BQ=13米,tanα=0.75.點A,B,P,Q在同一平面上,PQ⊥AB于點C.求香樟樹PQ的高度. 解:∵在Rt△QBC中,QC∶BC=5∶12,∴設QC=5x米,BC=12x米,∵BQ=13米,∴(5x)2+(12x)2=132,∴x=1(負值舍去),∴QC=5米,BC=12米,∵AB=8米,∴AC=AB+BC=20米,∵tanα=0.75,∴=0.75,即=0.75,∴PC=15,∴PQ=PC-QC=15-5=10米,故香樟樹PQ的高度為10米 13.(xx寧夏)如圖,港口A在觀測站O的正東方向,OA=4 km,某船從港口A出發(fā),沿北偏東15方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60的方向,則該船航行的距離(即AB的長)為多少千米. 解:過點A作AD⊥OB于D,在Rt△AOD中,∵∠ADO=90,∠AOD=30,OA=4 km,∴AD=OA=2 km,在Rt△ABD中,∵∠ADB=90,∠B=∠CAB-∠AOB=75-30=45,∴BD=AD=2 km,∴AB=AD=2 km,即該船航行的距離(即AB的長)為2 km 14.(xx廣安)數學活動課上,老師和學生一起去測量學校升旗臺上旗桿AB的高度,如圖,老師測得升旗臺前斜坡FC的坡比為iFC=1∶10(即EF∶CE=1∶10),學生小明站在離升旗臺水平距離為35 m(即CE=35 m)處的C點,測得旗桿頂端B的仰角為α,已知tanα=,升旗臺高AF=1 m,小明身高CD=1.6 m,請幫小明計算出旗桿AB的高度. 解:作DG⊥AE于G,則∠BDG=α,易知四邊形DCEG為矩形,∴DG=CE=35 m,EG=DC=1.6 m.在Rt△BDG中,BG=DGtanα=35=15 m,∴BE=15+1.6=16.6 m,∵斜坡FC的坡比為iFC=1∶10,CE=35 m,∴EF=35=3.5,∵AF=1,∴AE=AF+EF=1+3.5=4.5,∴AB=BE-AE=16.6-4.5=12.1 m,即旗桿AB的高度為12.1 m- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年中考數學復習 考點跟蹤突破15銳角三角函數和解直角三角形 2019 2020 年中 數學 復習 考點 跟蹤 突破 15 銳角 三角函數 和解 直角三角形
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-2661176.html