新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第三章】導(dǎo)數(shù)及其應(yīng)用 學(xué)案14
《新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第三章】導(dǎo)數(shù)及其應(yīng)用 學(xué)案14》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第三章】導(dǎo)數(shù)及其應(yīng)用 學(xué)案14(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編高考數(shù)學(xué)復(fù)習(xí)資料 學(xué)案14 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 0導(dǎo)學(xué)目標(biāo): 1.了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間(多項(xiàng)式函數(shù)一般不超過(guò)三次).2.了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件,會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值(多項(xiàng)式函數(shù)一般不超過(guò)三次)及最大(最小)值. 自主梳理 1.導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系: (1)若f′(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是______函數(shù),f′(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為_(kāi)_____區(qū)間; (2)若f′(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是______函數(shù)
2、,f′(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為_(kāi)_____區(qū)間; (3)若在(a,b)上,f′(x)≥0,且f′(x)在(a,b)的任何子區(qū)間內(nèi)都不恒等于零?f(x)在(a,b)上為_(kāi)_____函數(shù),若在(a,b)上,f′(x)≤0,且f′(x)在(a,b)的任何子區(qū)間內(nèi)都不恒等于零?f(x)在(a,b)上為_(kāi)_____函數(shù). 2.函數(shù)的極值 (1)判斷f(x0)是極值的方法 一般地,當(dāng)函數(shù)f(x)在點(diǎn)x0處連續(xù)時(shí), ①如果在x0附近的左側(cè)________,右側(cè)________,那么f(x0)是極大值; ②如果在x0附近的左側(cè)________,右側(cè)________,那么f(x0)
3、是極小值. (2)求可導(dǎo)函數(shù)極值的步驟 ①求f′(x); ②求方程________的根; ③檢查f′(x)在方程________的根左右值的符號(hào).如果左正右負(fù),那么f(x)在這個(gè)根處取得________;如果左負(fù)右正,那么f(x)在這個(gè)根處取得________. 自我檢測(cè) 1.已知f(x)的定義域?yàn)镽,f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則 ( ) A.f(x)在x=1處取得極小值 B.f(x)在x=1處取得極大值 C.f(x)是R上的增函數(shù) D.f(x)是(-∞,1)上的減函數(shù),(1,+∞)上的增函數(shù) 2.(2009·廣東)函數(shù)
4、f(x)=(x-3)ex的單調(diào)遞增區(qū)間是 ( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 3.(2011·濟(jì)寧模擬)已知函數(shù)y=f(x),其導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則y=f(x)( ) A.在(-∞,0)上為減函數(shù) B.在x=0處取極小值 C.在(4,+∞)上為減函數(shù) D.在x=2處取極大值 4.設(shè)p:f(x)=x3+2x2+mx+1在(-∞,+∞)內(nèi)單調(diào)遞增,q:m≥,則p是q的( ) A.充分不必要條件 B.必要不充分條件 C.充分必要條件
5、D.既不充分也不必要條件 5.(2011·福州模擬)已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處取極值10,則f(2)=________. 探究點(diǎn)一 函數(shù)的單調(diào)性 例1 已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R,e為自然對(duì)數(shù)的底數(shù)). (1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間; (2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍; (3)函數(shù)f(x)能否為R上的單調(diào)函數(shù),若能,求出a的取值范圍;若不能,請(qǐng)說(shuō)明理由. 變式遷移1 (2009·浙江)已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).
6、(1)若函數(shù)f(x)的圖象過(guò)原點(diǎn),且在原點(diǎn)處的切線斜率是-3,求a,b的值; (2)若函數(shù)f(x)在區(qū)間(-1,1)上不單調(diào),求a的取值范圍. 探究點(diǎn)二 函數(shù)的極值 例2 若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-. (1)求函數(shù)f(x)的解析式; (2)若關(guān)于x的方程f(x)=k有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍. 變式遷移2 設(shè)x=1與x=2是函數(shù)f(x)=aln x+bx2+x的兩個(gè)極值點(diǎn). (1)試確定常數(shù)a和b的值; (2)試判斷x=1,x=2是函數(shù)f(x)的極大值點(diǎn)還是極小值點(diǎn),并說(shuō)明理由. 探究
7、點(diǎn)三 求閉區(qū)間上函數(shù)的最值 例3 (2011·六安模擬)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)x=1處的切線為l:3x-y+1=0,若x=時(shí),y=f(x)有極值. (1)求a,b,c的值; (2)求y=f(x)在[-3,1]上的最大值和最小值. 變式遷移3 已知函數(shù)f(x)=ax3+x2+bx(其中常數(shù)a,b∈R),g(x)=f(x)+f′(x)是奇函數(shù). (1)求f(x)的表達(dá)式; (2)討論g(x)的單調(diào)性,并求g(x)在區(qū)間[1,2]上的最大值和最小值. 分類(lèi)討論求函數(shù)的單調(diào)區(qū)間 例 (12分)(2009·遼寧)
8、已知函數(shù)f(x)=x2-ax+(a-1)ln x,a>1.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:若a<5,則對(duì)任意x1,x2∈(0,+∞),x1≠x2,有>-1.
多角度審題 (1)先求導(dǎo),根據(jù)參數(shù)a的值進(jìn)行分類(lèi)討論;(2)若x1>x2,結(jié)論等價(jià)于f(x1)+x1>f(x2)+x2,若x1 9、1<1,而a>1,故10,故f(x)在(a-1,1)上單調(diào)遞減,在(0,a-1),(1,+∞)上單調(diào)遞增.
③若a-1>1,即a>2時(shí),同理可得f(x)在(1,a-1)上單調(diào)遞減,
在(0,1),(a-1,+∞)上單調(diào)遞增.[6分]
(2)證明 考慮函數(shù)g(x)=f(x)+x
=x2-ax+(a-1)ln x+x.
則g′(x)=x-(a-1)+≥2-(a-1)
=1-(-1)2.
由于10,
即g(x)在(0,+∞)上單調(diào)遞增,
從而當(dāng)x1>x 10、2>0時(shí),有g(shù)(x1)-g(x2)>0,
即f(x1)-f(x2)+x1-x2>0,
故>-1.[10分]
當(dāng)0 11、函數(shù)f(x)的定義域;
(2)求f′(x),令f′(x)=0,求出它在定義域內(nèi)的一切實(shí)根;
(3)把函數(shù)f(x)的間斷點(diǎn)(即f(x)的無(wú)定義點(diǎn))的橫坐標(biāo)和上面的各實(shí)數(shù)根按由小到大的順序排列起來(lái),然后用這些點(diǎn)把函數(shù)f(x)的定義區(qū)間分成若干個(gè)小區(qū)間;
(4)確定f′(x)在各個(gè)開(kāi)區(qū)間內(nèi)的符號(hào),根據(jù)f′(x)的符號(hào)判定函數(shù)f(x)在每個(gè)相應(yīng)小開(kāi)區(qū)間內(nèi)的增減性.
2.可導(dǎo)函數(shù)極值存在的條件:
(1)可導(dǎo)函數(shù)的極值點(diǎn)x0一定滿足f′(x0)=0,但當(dāng)f′(x1)=0時(shí),x1不一定是極值點(diǎn).如f(x)=x3,f′(0)=0,但x=0不是極值點(diǎn).
(2)可導(dǎo)函數(shù)y=f(x)在點(diǎn)x0處取得極值的 12、充要條件是f′(x0)=0,且在x0左側(cè)與右側(cè)f′(x)的符號(hào)不同.
3.函數(shù)的最大值、最小值是比較整個(gè)定義區(qū)間的函數(shù)值得出來(lái)的,函數(shù)的極值是比較極值點(diǎn)附近的函數(shù)值得出來(lái)的.函數(shù)的極值可以有多有少,但最值只有一個(gè),極值只能在區(qū)間內(nèi)取得,最值則可以在端點(diǎn)取得,有極值的未必有最值,有最值的未必有極值,極值可能成為最值,最值只要不在端點(diǎn)必定是極值.
4.求函數(shù)的最值以導(dǎo)數(shù)為工具,先找到極值點(diǎn),再求極值和區(qū)間端點(diǎn)函數(shù)值,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值.
(滿分:75分)
一、選擇題(每小題5分,共25分)
1.(2011·大連模擬)設(shè)f(x),g(x)是R上的可導(dǎo)函數(shù),f′ 13、(x)、g′(x)分別為f(x)、g(x)的導(dǎo)函數(shù),且f′(x)·g(x)+f(x)g′(x)<0,則當(dāng)a 14、)
A.1個(gè) B.2個(gè)
C.3個(gè) D.4個(gè)
3.(2011·嘉興模擬)若函數(shù)y=a(x3-x)在區(qū)間上為減函數(shù),則a的取值范圍是 ( )
A.a(chǎn)>0 B.-11 D.0
C.m≤ D.m<
5. 15、設(shè)a∈R,若函數(shù)y=eax+3x,x∈R有大于零的極值點(diǎn),則 ( )
A.a(chǎn)>-3 B.a(chǎn)<-3
C.a(chǎn)>- D.a(chǎn)<-
題號(hào)
1
2
3
4
5
答案
二、填空題(每小題4分,共12分)
6.(2009·遼寧)若函數(shù)f(x)=在x=1處取極值,則a=________.
7.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如右圖所示,給出以下結(jié)論:
①函數(shù)f(x)在(-2,-1)和(1,2)上是單調(diào)遞增函數(shù);
②函數(shù)f(x)在(-2,0)上是單調(diào)遞增函數(shù),在(0,2)上是單調(diào)遞減函數(shù);
③函數(shù)f(x) 16、在x=-1處取得極大值,在x=1處取得極小值;
④函數(shù)f(x)在x=0處取得極大值f(0).
則正確命題的序號(hào)是________.(填上所有正確命題的序號(hào)).
8.已知函數(shù)f(x)=x3+mx2+(m+6)x+1既存在極大值又存在極小值,則實(shí)數(shù)m的取值范圍為_(kāi)_______.
三、解答題(共38分)
9.(12分)求函數(shù)f(x)=的極值.
10.(12分)(2011·秦皇島模擬)已知a為實(shí)數(shù),且函數(shù)f(x)=(x2-4)(x-a).
(1)求導(dǎo)函數(shù)f′(x);
(2)若f′(-1)=0,求函數(shù)f(x)在[-2,2]上的最大值、最小值.
11.( 17、14分)(2011·汕頭模擬)已知函數(shù)f(x)=x3+mx2+nx-2的圖象過(guò)點(diǎn)(-1,-6),且函數(shù)g(x)=f′(x)+6x的圖象關(guān)于y軸對(duì)稱.
(1)求m,n的值及函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a>0,求函數(shù)y=f(x)在區(qū)間(a-1,a+1)內(nèi)的極值.
答案 自主梳理
1.(1)增 增 (2)減 減 (3)增 減 2.(1)①f′(x)>0
f′(x)<0?、趂′(x)<0 f′(x)>0 (2)②f′(x)=0
③f′(x)=0 極大值 極小值
自我檢測(cè)
1.C 2.D 3.C 4.C
5.18
解析 f′(x)=3x2+2ax+b,
18、由題意即
得a=4,b=-11或a=-3,b=3.
但當(dāng)a=-3時(shí),f′(x)=3x2-6x+3≥0,故不存在極值,
∴a=4,b=-11,f(2)=18.
課堂活動(dòng)區(qū)
例1 解題導(dǎo)引 (1)一般地,涉及到函數(shù)(尤其是一些非常規(guī)函數(shù))的單調(diào)性問(wèn)題,往往可以借助導(dǎo)數(shù)這一重要工具進(jìn)行求解.函數(shù)在定義域內(nèi)存在單調(diào)區(qū)間,就是不等式f′(x)>0或f′(x)<0在定義域內(nèi)有解.這樣就可以把問(wèn)題轉(zhuǎn)化為解不等式問(wèn)題.
(2)已知函數(shù)在某個(gè)區(qū)間上單調(diào)求參數(shù)問(wèn)題,通常是解決一個(gè)恒成立問(wèn)題,方法有①分離參數(shù)法,②利用二次函數(shù)中恒成立問(wèn)題解決.
(3)一般地,可導(dǎo)函數(shù)f(x)在(a,b)上是增(或減) 19、函數(shù)的充要條件是:對(duì)任意x∈(a,b),都有f′(x)≥0(或f′(x)≤0),且f′(x)在(a,b)的任何子區(qū)間內(nèi)都不恒等于零.特別是在已知函數(shù)的單調(diào)性求參數(shù)的取值范圍時(shí),要注意“等號(hào)”是否可以取到.
解 (1)當(dāng)a=2時(shí),f(x)=(-x2+2x)ex,
∴f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex.
令f′(x)>0,即(-x2+2)ex>0,
∵ex>0,∴-x2+2>0,解得- 20、x2+(a-2)x+a]ex
∴[-x2+(a-2)x+a]ex≥0對(duì)x∈(-1,1)都成立.
∵ex>0,
∴-x2+(a-2)x+a≥0對(duì)x∈(-1,1)都成立,
即x2-(a-2)x-a≤0對(duì)x∈(-1,1)恒成立.
設(shè)h(x)=x2-(a-2)x-a
只須滿足,解得a≥.
(3)若函數(shù)f(x)在R上單調(diào)遞減,
則f′(x)≤0對(duì)x∈R都成立,即[-x2+(a-2)x+a]ex≤0對(duì)x∈R都成立.
∵ex>0,∴x2-(a-2)x-a≥0對(duì)x∈R都成立.
∴Δ=(a-2)2+4a≤0,即a2+4≤0,這是不可能的.
故函數(shù)f(x)不可能在R上單調(diào)遞減.
若函數(shù)f( 21、x)在R上單調(diào)遞增,則f′(x)≥0對(duì)x∈R都成立,即[-x2+(a-2)x+a]ex≥0對(duì)x∈R都成立.
∵ex>0,∴x2-(a-2)x-a≤0對(duì)x∈R都成立.
而x2-(a-2)x-a≤0不可能恒成立,
故函數(shù)f(x)不可能在R上單調(diào)遞增.
綜上可知函數(shù)f(x)不可能是R上的單調(diào)函數(shù).
變式遷移1 解 (1)由題意得f′(x)=3x2+2(1-a)x-a(a+2),又,
解得b=0,a=-3或a=1.
(2)由f′(x)=0,得x1=a,x2=-.
又f(x)在(-1,1)上不單調(diào),
即或
解得或
所以a的取值范圍為(-5,-)∪(-,1).
例2 解題導(dǎo)引 本題 22、研究函數(shù)的極值問(wèn)題.利用待定系數(shù)法,由極值點(diǎn)的導(dǎo)數(shù)值為0,以及極大值、極小值,建立方程組求解.判斷函數(shù)極值時(shí)要注意導(dǎo)數(shù)為0的點(diǎn)不一定是極值點(diǎn),所以求極值時(shí)一定要判斷導(dǎo)數(shù)為0的點(diǎn)左側(cè)與右側(cè)的單調(diào)性,然后根據(jù)極值的定義判斷是極大值還是極小值.
解 (1)由題意可知f′(x)=3ax2-b.
于是,解得
故所求的函數(shù)解析式為f(x)=x3-4x+4.
(2)由(1)可知f′(x)=x2-4=(x-2)(x+2).
令f′(x)=0得x=2或x=-2,
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表所示:
x
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
f′(x) 23、
+
0
-
0
+
f(x)
單調(diào)遞增
極大值
單調(diào)遞減
極小值
單調(diào)遞增
因此,當(dāng)x=-2時(shí),
f(x)有極大值,
當(dāng)x=2時(shí),f(x)有極小值-,
所以函數(shù)的大致圖象如圖,
故實(shí)數(shù)k的取值范圍為
(-,).
變式遷移2 解 (1)f′(x)=+2bx+1,
∴.解得a=-,b=-.
(2)f′(x)=-+(-)+1=-.
函數(shù)定義域?yàn)?0,+∞),列表
x
(0,1)
1
(1,2)
2
(2,+∞)
f′(x)
-
0
+
0
-
f(x)
單調(diào)遞減
極小值
單調(diào)遞增
極大值
單調(diào)遞減
∴x=1是f 24、(x)的極小值點(diǎn),x=2是f(x)的極大值點(diǎn).
例3 解題導(dǎo)引 設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),求f(x)在[a,b]上的最大值和最小值的步驟:
(1)求函數(shù)y=f(x)在(a,b)內(nèi)的極值.
(2)將函數(shù)y=f(x)的各極值與端點(diǎn)處的函數(shù)值f(a)、f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值.
解 (1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b,
當(dāng)x=1時(shí),切線l的斜率為3,可得2a+b=0;①
當(dāng)x=時(shí),y=f(x)有極值,則f′=0,
可得4a+3b+4=0.②
由①②解得a=2,b=-4,
又切點(diǎn)的 25、橫坐標(biāo)為x=1,∴f(1)=4.
∴1+a+b+c=4.∴c=5.
(2)由(1),得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4.
令f′(x)=0,得x=-2或x=,
∴f′(x)<0的解集為,即為f(x)的減區(qū)間.
[-3,-2)、是函數(shù)的增區(qū)間.
又f(-3)=8,f(-2)=13,f=,f(1)=4,
∴y=f(x)在[-3,1]上的最大值為13,最小值為.
變式遷移3 解 (1)由題意得f′(x)=3ax2+2x+b.
因此g(x)=f(x)+f′(x)=ax3+(3a+1)x2+(b+2)x+b.
因?yàn)楹瘮?shù)g(x)是奇函數(shù),
所以g( 26、-x)=-g(x),即對(duì)任意實(shí)數(shù)x,
有a(-x)3+(3a+1)(-x)2+(b+2)(-x)+b
=-[ax3+(3a+1)x2+(b+2)x+b],
從而3a+1=0,b=0,解得a=-,b=0,
因此f(x)的表達(dá)式為f(x)=-x3+x2.
(2)由(1)知g(x)=-x3+2x,
所以g′(x)=-x2+2,令g′(x)=0,
解得x1=-,x2=,
則當(dāng)x<-或x>時(shí),g′(x)<0,
從而g(x)在區(qū)間(-∞,-),(,+∞)上是減函數(shù);
當(dāng)- 27、大值與最小值只能在x=1,,2時(shí)取得,
而g(1)=,g()=,g(2)=.
因此g(x)在區(qū)間[1,2]上的最大值為g()=,
最小值為g(2)=.
課后練習(xí)區(qū)
1.C 2.A 3.A 4.A 5.B
6.3
解析 ∵f′(x)=()′
==,
又∵x=1為函數(shù)的極值,∴f′(1)=0.
∴1+2×1-a=0,即a=3.
7.②④
解析 觀察函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象,由單調(diào)性、極值與導(dǎo)數(shù)值的關(guān)系直接判斷.
8.(-∞,-3)∪(6,+∞)
解析 f′(x)=3x2+2mx+m+6=0有兩個(gè)不等實(shí)根,則Δ=4m2-12×(m+6)>0,∴m>6或m<-3 28、.
9.解 f′(x)=()′=,由f′(x)=0得x=-2,1.………………(4分)
當(dāng)x∈(-∞,-2)時(shí)f′(x)<0,當(dāng)x∈(-2,1)時(shí)f′(x)>0,故x=-2是函數(shù)的極小值點(diǎn),故f(x)的極小值為f(-2)=-;…………………………………………………………………(8分)
當(dāng)x∈(-2,1)時(shí)f′(x)>0,當(dāng)x∈(1,+∞)時(shí)f′(x)<0,
故x=1是函數(shù)的極大值點(diǎn),
所以f(x)的極大值為f(1)=1.……………………………………………………………(12分)
10.解 (1)由f(x)=x3-ax2-4x+4a,
得f′(x)=3x2-2ax-4.………………… 29、………………………………………………(4分)
(2)因?yàn)閒′(-1)=0,所以a=,
所以f(x)=x3-x2-4x+2,f′(x)=3x2-x-4.
又f′(x)=0,所以x=或x=-1.
又f=-,f(-1)=,
f(-2)=0,f(2)=0,所以f(x)在[-2,2]上的最大值、最小值分別為、-.………(12分)
11.解 (1)由函數(shù)f(x)圖象過(guò)點(diǎn)(-1,-6),
得m-n=-3. ①
由f(x)=x3+mx2+nx-2,
得f′(x)=3x2+2mx 30、+n,
則g(x)=f′(x)+6x=3x2+(2m+6)x+n.
而g(x)的圖象關(guān)于y軸對(duì)稱,所以-=0.
所以m=-3,代入①,得n=0.…………………………………………………………(4分)
于是f′(x)=3x2-6x=3x(x-2).
由f′(x)>0,得x>2或x<0,
故f(x)的單調(diào)遞增區(qū)間是(-∞,0)∪(2,+∞);
由f′(x)<0,得0 31、、f(x)的變化情況如下表:
x
(-∞,0)
0
(0,2)
2
(2,+∞)
f′(x)
+
0
-
0
+
f(x)
極大值
極小值
……………………………………………………………………………………………(10分)
由此可得:
當(dāng)0
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 指向核心素養(yǎng)發(fā)展的高中生物學(xué)1輪復(fù)習(xí)備考建議
- 新課程新評(píng)價(jià)新高考導(dǎo)向下高三化學(xué)備考的新思考
- 新時(shí)代背景下化學(xué)高考備考策略及新課程標(biāo)準(zhǔn)的高中化學(xué)教學(xué)思考
- 2025屆江西省高考政治二輪復(fù)習(xí)備考建議
- 新教材新高考背景下的化學(xué)科學(xué)備考策略
- 新高考背景下的2024年高考化學(xué)二輪復(fù)習(xí)備考策略
- 2025屆高三數(shù)學(xué)二輪復(fù)習(xí)備考交流會(huì)課件
- 2025年高考化學(xué)復(fù)習(xí)研究與展望
- 2024年高考化學(xué)復(fù)習(xí)備考講座
- 2025屆高考數(shù)學(xué)二輪復(fù)習(xí)備考策略和方向
- 2024年感動(dòng)中國(guó)十大人物事跡及頒獎(jiǎng)詞
- XX教育系統(tǒng)單位述職報(bào)告教育工作概述教育成果展示面臨的挑戰(zhàn)未來(lái)規(guī)劃
- 2025《增值稅法》全文解讀學(xué)習(xí)高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 初中資料:400個(gè)語(yǔ)文優(yōu)秀作文標(biāo)題
- 初中語(yǔ)文考試專(zhuān)項(xiàng)練習(xí)題(含答案)