高考數(shù)學(xué) 浙江專用總復(fù)習(xí)教師用書:第2章 第4講 冪函數(shù)與二次函數(shù) Word版含解析
《高考數(shù)學(xué) 浙江專用總復(fù)習(xí)教師用書:第2章 第4講 冪函數(shù)與二次函數(shù) Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 浙江專用總復(fù)習(xí)教師用書:第2章 第4講 冪函數(shù)與二次函數(shù) Word版含解析(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第4講 冪函數(shù)與二次函數(shù) 最新考綱 1.了解冪函數(shù)的概念;掌握冪函數(shù)y=x,y=x2,y=x3,y=x,y=的圖象和性質(zhì);2.理解二次函數(shù)的圖象和性質(zhì),能用二次函數(shù)、方程、不等式之間的關(guān)系解決簡單問題. 知 識 梳 理 1.冪函數(shù) (1)冪函數(shù)的定義 一般地,形如y=xα的函數(shù)稱為冪函數(shù),其中x是自變量,α為常數(shù). (2)常見的5種冪函數(shù)的圖象 (3)常見的5種冪函數(shù)的性質(zhì) 函數(shù) 特征 性質(zhì) y=x y=x2 y=x3 y=x y=x-1 定義域 R R R [0,+∞) {x|x∈R, 且x≠0} 值域
2、 R [0,+∞) R [0,+ ∞) {y|y∈R, 且y≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 2.二次函數(shù) (1)二次函數(shù)解析式的三種形式: 一般式:f(x)=ax2+bx+c(a≠0). 頂點(diǎn)式:f(x)=a(x-m)2+n(a≠0),頂點(diǎn)坐標(biāo)為(m,n). 零點(diǎn)式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2為f(x)的零點(diǎn). (2)二次函數(shù)的圖象和性質(zhì) 解析式 f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0) 圖象 定義域 (-∞,+∞) (-∞,+∞) 值域 單調(diào)性 在
3、上單調(diào)遞減; 在上單調(diào)遞增 在上單調(diào)遞增; 在上單調(diào)遞減 對稱性 函數(shù)的圖象關(guān)于x=-對稱 診 斷 自 測 1.判斷正誤(在括號內(nèi)打“√”或“×”) (1)函數(shù)y=2x是冪函數(shù).( ) (2)當(dāng)n>0時,冪函數(shù)y=xn在(0,+∞)上是增函數(shù).( ) (3)二次函數(shù)y=ax2+bx+c(x∈R)不可能是偶函數(shù).( ) (4)二次函數(shù)y=ax2+bx+c(x∈[a,b])的最值一定是.( ) 解析 (1)由于冪函數(shù)的解析式為f(x)=xα,故y=2x不是冪函數(shù),(1)錯. (3)由于當(dāng)b=0時,y=ax2+bx+c=ax2+c為偶函數(shù),故(3)錯. (4)對
4、稱軸x=-,當(dāng)-小于a或大于b時,最值不是,故(4)錯. 答案 (1)× (2)√ (3)× (4)× 2.(20xx·全國Ⅲ卷)已知a=2,b=3,c=25,則( ) A.ba>b. 答案 A 3.已知f(x)=x2+px+q滿足f(1)=f(2)=0,則f(-1)的值是( ) A.5 B.-5 C.6 D.-6 解析 由f(1)=f(2)=0知方程x2+px+q=0的兩根分別為1,2,則p=-3,q=2,∴f(
5、x)=x2-3x+2,∴f(-1)=6. 答案 C 4.(20xx·杭州測試)若函數(shù)f(x)是冪函數(shù),則f(1)=________,若滿足f(4)=8f(2),則f=________. 解析 由題意可設(shè)f(x)=xα,則f(1)=1,由f(4)=8f(2)得4α=8×2α,解得α=3,所以f(x)=x3,故f==. 答案 1 5.若冪函數(shù)y=(m2-3m+3)xm2-m-2的圖象不經(jīng)過原點(diǎn),則實(shí)數(shù)m的值為________. 解析 由解得m=1或2. 經(jīng)檢驗(yàn)m=1或2都適合. 答案 1或2 6.若函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,3]上是減函數(shù),則實(shí)數(shù)a的取
6、值范圍是________. 解析 二次函數(shù)f(x)圖象的對稱軸是x=1-a,由題意知1-a≥3,∴a≤-2. 答案 (-∞,-2] 考點(diǎn)一 冪函數(shù)的圖象和性質(zhì) 【例1】 (1)(20xx·濟(jì)南診斷測試)已知冪函數(shù)f(x)=k·xα的圖象過點(diǎn),則k+α等于( ) A. B.1 C. D.2 (2)若(2m+1)>(m2+m-1),則實(shí)數(shù)m的取值范圍是( ) A. B. C.(-1,2) D. 解析 (1)由冪函數(shù)的定義知k=1.又f=, 所以=,解得α=,從而k+α=. (2)因?yàn)楹瘮?shù)y=x的定義域?yàn)閇0,+∞), 且在定義域內(nèi)為增函數(shù),
7、所以不等式等價于 解得 即≤m<2. 答案 (1)C (2)D 規(guī)律方法 (1)可以借助冪函數(shù)的圖象理解函數(shù)的對稱性、單調(diào)性; (2)α的正負(fù):當(dāng)α>0時,圖象過原點(diǎn)和(1,1),在第一象限的圖象上升;當(dāng)α<0時,圖象不過原點(diǎn),過(1,1),在第一象限的圖象下降. (3)在比較冪值的大小時,必須結(jié)合冪值的特點(diǎn),選擇適當(dāng)?shù)暮瘮?shù),借助其單調(diào)性進(jìn)行比較,準(zhǔn)確掌握各個冪函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵. 【訓(xùn)練1】 (1)冪函數(shù)y=f(x)的圖象過點(diǎn)(4,2),則冪函數(shù)y=f(x)的圖象是( ) (2)已知冪函數(shù)f(x)=(n2+2n-2)xn2-3n(n∈Z)的圖象關(guān)于y軸對稱,且
8、在(0,+∞)上是減函數(shù),則n的值為( ) A.-3 B.1 C.2 D.1或2 解析 (1)設(shè)f(x)=xα(α∈R),則4α=2, ∴α=,因此f(x)=x,根據(jù)圖象的特征,C正確. (2)∵冪函數(shù)f(x)=(n2+2n-2)xn2-3n在(0,+∞)上是減函數(shù), ∴∴n=1, 又n=1時,f(x)=x-2的圖象關(guān)于y軸對稱,故n=1. 答案 (1)C (2)B 考點(diǎn)二 二次函數(shù)的圖象與性質(zhì) 【例2】 (20xx·湖州調(diào)研)已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6]. (1)當(dāng)a=-2時,求f(x)的最值; (2)求實(shí)數(shù)a的取值范圍,使y=f(
9、x)在區(qū)間[-4,6]上是單調(diào)函數(shù); (3)當(dāng)a=-1時,求f(|x|)的單調(diào)區(qū)間. 解 (1)當(dāng)a=-2時,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6], ∴f(x)在[-4,2]上單調(diào)遞減,在[2,6]上單調(diào)遞增, ∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15, 故f(x)的最大值是35. (2)由于函數(shù)f(x)的圖象開口向上,對稱軸是x=-a,所以要使f(x)在[-4,6]上是單調(diào)函數(shù),應(yīng)有-a≤-4或-a≥6,即a≤-6或a≥4, 故a的取值范圍是(-∞,-6]∪[4,+∞). (3)當(dāng)a=-1時,f(|x|)=x2-2|x
10、|+3= 其圖象如圖所示, 又∵x∈[-4,6],∴f(|x|)在區(qū)間[-4,-1)和[0,1)上為減函數(shù),在區(qū)間[-1,0)和[1,6]上為增函數(shù). 規(guī)律方法 解決二次函數(shù)圖象與性質(zhì)問題時要注意: (1)拋物線的開口、對稱軸位置、定義區(qū)間三者相互制約,常見的題型中這三者有兩定一不定,要注意分類討論; (2)要注意數(shù)形結(jié)合思想的應(yīng)用,尤其是給定區(qū)間上的二次函數(shù)最值問題,先“定性”(作草圖),再“定量”(看圖求解),事半功倍. 【訓(xùn)練2】 (1)設(shè)abc>0,二次函數(shù)f(x)=ax2+bx+c的圖象可能是( ) (2)(20xx·武漢模擬)若函數(shù)f(x)=(x+a)(bx
11、+2a)(常數(shù)a,b∈R)是偶函數(shù),且它的值域?yàn)?-∞,4],則該函數(shù)的解析式f(x)=________. 解析 (1)由A,C,D知,f(0)=c<0, 從而由abc>0,所以ab<0,所以對稱軸x=->0,知A,C錯誤,D滿足要求;由B知f(0)=c>0, 所以ab>0,所以x=-<0,B錯誤. (2)由f(x)是偶函數(shù)知f(x)圖象關(guān)于y軸對稱, ∴b=-2,∴f(x)=-2x2+2a2, 又f(x)的值域?yàn)?-∞,4], ∴2a2=4, 故f(x)=-2x2+4. 答案 (1)D (2)-2x2+4 考點(diǎn)三 二次函數(shù)的應(yīng)用(多維探究) 命題角度一 二次函數(shù)的恒成立
12、問題
【例3-1】 已知二次函數(shù)f(x)=ax2+bx+1(a,b∈R),x∈R.
(1)若函數(shù)f(x)的最小值為f(-1)=0,求f(x)的解析式,并寫出單調(diào)區(qū)間;
(2)在(1)的條件下,f(x)>x+k在區(qū)間[-3,-1]上恒成立,試求k的取值范圍.
解 (1)由題意知
解得
所以f(x)=x2+2x+1,
由f(x)=(x+1)2知,函數(shù)f(x)的單調(diào)遞增區(qū)間為[-1,+∞),單調(diào)遞減區(qū)間為(-∞,-1].
(2)由題意知,x2+2x+1>x+k在區(qū)間[-3,-1]上恒成立,即k 13、,
由g(x)=+知g(x)在區(qū)間[-3,-1]上是減函數(shù),則g(x)min=g(-1)=1,所以k<1,
故k的取值范圍是(-∞,1).
規(guī)律方法 (1)對于函數(shù)y=ax2+bx+c,若是二次函數(shù),就隱含著a≠0,當(dāng)題目未說明是二次函數(shù)時,就要分a=0和a≠0兩種情況討論.
(2)由不等式恒成立求參數(shù)的取值范圍,常用分離參數(shù)法,轉(zhuǎn)化為求函數(shù)最值問題,其依據(jù)是a≥f(x)?a≥f(x)max,a≤f(x)?a≤f(x)min.
【訓(xùn)練3】 (20xx·九江模擬)已知f(x)=x2+2(a-2)x+4,如果對x∈[-3,1],f(x)>0恒成立,則實(shí)數(shù)a的取值范圍為________.
14、
解析 因?yàn)閒(x)=x2+2(a-2)x+4,
對稱軸x=-(a-2),
對x∈[-3,1],f(x)>0恒成立,
所以討論對稱軸與區(qū)間[-3,1]的位置關(guān)系得:
或或
解得a∈?或1≤a<4或-<a<1,
所以a的取值范圍為.
答案
命題角度二 二次函數(shù)的零點(diǎn)問題
【例3-2】 (20xx·全國Ⅱ卷)已知函數(shù)f(x)(x∈R)滿足f(x)=f(2-x),若函數(shù)y=|x2-2x-3|與y=f(x)圖象的交點(diǎn)為(x1,y1),(x2,y2),…,(xm,ym),則xi=( )
A.0 B.m C.2m D.4m
解析 由f(x)=f(2-x)知函數(shù)f(x) 15、的圖象關(guān)于直線x=1對稱.又y=|x2-2x-3|=|(x-1)2-4|的圖象也關(guān)于直線x=1對稱,所以這兩函數(shù)的交點(diǎn)也關(guān)于直線x=1對稱.
不妨設(shè)x1 16、0xx·麗水一模)已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=x2-2x,如果函數(shù)g(x)=f(x)-m(m∈R)恰有4個零點(diǎn),則m的取值范圍是________.
解析 函數(shù)g(x)=f(x)-m(m∈R)恰有4個零點(diǎn)可化為函數(shù)y=f(x)的圖象與直線y=m恰有4個交點(diǎn),作函數(shù)y=f(x)與y=m的圖象如圖所示,
故m的取值范圍是(-1,0).
答案 (-1,0)
[思想方法]
1.冪函數(shù)y=xα(α∈R)圖象的特征
α>0時,圖象過原點(diǎn)和(1,1)點(diǎn),在第一象限的部分“上升”;α<0時,圖象不過原點(diǎn),經(jīng)過(1,1)點(diǎn)在第一象限的部分“下降”,反之也成立.
17、
2.求二次函數(shù)的解析式就是確定函數(shù)式f(x)=ax2+bx+c(a≠0)中a,b,c的值.應(yīng)根據(jù)題設(shè)條件選用適當(dāng)?shù)谋磉_(dá)形式,用待定系數(shù)法確定相應(yīng)字母的值.
3.二次函數(shù)與一元二次不等式密切相關(guān),借助二次函數(shù)的圖象和性質(zhì),可直觀地解決與不等式有關(guān)的問題.
4.二次函數(shù)的單調(diào)性與對稱軸緊密相連,二次函數(shù)的最值問題要根據(jù)其圖象以及所給區(qū)間與對稱軸的關(guān)系確定.
[易錯防范]
1.冪函數(shù)的圖象一定會出現(xiàn)在第一象限內(nèi),一定不會出現(xiàn)在第四象限,至于是否出現(xiàn)在第二、三象限內(nèi),要看函數(shù)的奇偶性;冪函數(shù)的圖象最多只能同時出現(xiàn)在兩個象限內(nèi);如果冪函數(shù)圖象與坐標(biāo)軸相交,則交點(diǎn)一定是原點(diǎn).
2.對于函數(shù)y= 18、ax2+bx+c,要認(rèn)為它是二次函數(shù),就必須滿足a≠0,當(dāng)題目條件中未說明a≠0時,就要討論a=0和a≠0兩種情況.
基礎(chǔ)鞏固題組
(建議用時:40分鐘)
一、選擇題
1.(20xx·鄭州外國語學(xué)校期中)已知α∈{-1,1,2,3},則使函數(shù)y=xα的值域?yàn)镽,且為奇函數(shù)的所有α的值為( )
A.1,3 B.-1,1
C.-1,3 D.-1,1,3
解析 因?yàn)楹瘮?shù)y=xα為奇函數(shù),故α的可能值為-1,1,3.又y=x-1的值域?yàn)閧y|y≠0},函數(shù)y=x,y=x3的值域都為R.所以符合要求的α的值為1,3.
答案 A
2.已知a,b,c∈R,函數(shù)f(x)=a 19、x2+bx+c.若f(0)=f(4)>f(1),則( )
A.a>0,4a+b=0 B.a<0,4a+b=0
C.a>0,2a+b=0 D.a<0,2a+b=0
解析 因?yàn)閒(0)=f(4)>f(1),所以函數(shù)圖象應(yīng)開口向上,即a>0,且其對稱軸為x=2,即-=2,所以4a+b=0.
答案 A
3.在同一坐標(biāo)系內(nèi),函數(shù)y=xa(a≠0)和y=ax+的圖象可能是( )
解析 若a<0,由y=xa的圖象知排除C,D選項,由y=ax+的圖象知應(yīng)選B;若a>0,y=xa的圖象知排除A,B選項,但y=ax+的圖象均不適合,綜上選B.
答案 B
4.若函數(shù)f(x)=x2 20、-ax-a在區(qū)間[0,2]上的最大值為1,則實(shí)數(shù)a等于( )
A.-1 B.1
C.2 D.-2
解析 ∵函數(shù)f(x)=x2-ax-a的圖象為開口向上的拋物線,
∴函數(shù)的最大值在區(qū)間的端點(diǎn)取得,
∵f(0)=-a,f(2)=4-3a,
∴或解得a=1.
答案 B
5.若關(guān)于x的不等式x2-4x-2-a>0在區(qū)間(1,4)內(nèi)有解,則實(shí)數(shù)a的取值范圍是( )
A.(-∞,-2) B.(-2,+∞)
C.(-6,+∞) D.(-∞,-6)
解析 不等式x2-4x-2-a>0在區(qū)間(1,4)內(nèi)有解等價于a<(x2-4x-2)max,
令f(x)=x2-4
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 指向核心素養(yǎng)發(fā)展的高中生物學(xué)1輪復(fù)習(xí)備考建議
- 新課程新評價新高考導(dǎo)向下高三化學(xué)備考的新思考
- 新時代背景下化學(xué)高考備考策略及新課程標(biāo)準(zhǔn)的高中化學(xué)教學(xué)思考
- 2025屆江西省高考政治二輪復(fù)習(xí)備考建議
- 新教材新高考背景下的化學(xué)科學(xué)備考策略
- 新高考背景下的2024年高考化學(xué)二輪復(fù)習(xí)備考策略
- 2025屆高三數(shù)學(xué)二輪復(fù)習(xí)備考交流會課件
- 2025年高考化學(xué)復(fù)習(xí)研究與展望
- 2024年高考化學(xué)復(fù)習(xí)備考講座
- 2025屆高考數(shù)學(xué)二輪復(fù)習(xí)備考策略和方向
- 2024年感動中國十大人物事跡及頒獎詞
- XX教育系統(tǒng)單位述職報告教育工作概述教育成果展示面臨的挑戰(zhàn)未來規(guī)劃
- 2025《增值稅法》全文解讀學(xué)習(xí)高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 初中資料:400個語文優(yōu)秀作文標(biāo)題
- 初中語文考試專項練習(xí)題(含答案)