購(gòu)買(mǎi)設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢(xún)QQ:12401814
河南理工大學(xué)萬(wàn)方科技學(xué)院本科畢業(yè)設(shè)計(jì)
中文翻譯
分布式搜救機(jī)器人的控制和仿真
1機(jī)器人簡(jiǎn)介
幾千年前人類(lèi)就渴望制造一種像人一樣的機(jī)器,以便將人類(lèi)從繁重的勞動(dòng)中解脫出來(lái)。 如古希臘詩(shī)Homeros的長(zhǎng)篇敘事詩(shī) 《伊利亞特》中的冶煉之神瘸腿海倍斯特司 ,就用黃金鑄造出一個(gè)美麗聰穎的侍女;希臘神話(huà)《阿魯哥探險(xiǎn)船》中的青銅巨人泰洛斯;猶太傳說(shuō)中的泥土巨人等等,這些美麗的神話(huà)時(shí)刻激勵(lì)著人們一定要把美麗的神話(huà)變?yōu)楝F(xiàn)實(shí),早在兩千年前就開(kāi)始出現(xiàn)了自動(dòng)木人和一些簡(jiǎn)單的機(jī)械偶人。
到了近代,機(jī)器人一詞的出現(xiàn)和世界上第一臺(tái)工業(yè)機(jī)器人問(wèn)世之后,不同功能的機(jī)器人也相繼出現(xiàn)并且活躍在不同的領(lǐng)域,從天上到地下,從工業(yè)拓廣到 農(nóng)業(yè)、林、牧、漁,甚至進(jìn)入尋常百姓家。機(jī)器人的種類(lèi)之多,應(yīng)用之廣,影響之深,是我們始料未及的。從機(jī)器人的用途來(lái)分,可以分為:
◆ 地面軍用機(jī)器人
地面機(jī)器人主要是指智能或遙控的輪式和履帶式車(chē)輛.地面軍用機(jī)器人又可分為自主車(chē)輛和半自主車(chē)輛。自主車(chē)輛依靠自身的智能自主導(dǎo)航,躲避障礙物,獨(dú)立完成各種戰(zhàn)斗任務(wù);半自主車(chē)輛可在人的監(jiān)視下自主行使,在遇到困難時(shí)操作人員可以進(jìn)行遙控干預(yù)。
◆無(wú)人機(jī)
被稱(chēng)為空中機(jī)器人的無(wú)人機(jī)是軍用機(jī)器人中發(fā)展最快的家族,從1913年第一臺(tái)自動(dòng)駕駛儀問(wèn)世以來(lái),無(wú)人機(jī)的基本類(lèi)型已達(dá)到300多種,目前在世界市場(chǎng)上銷(xiāo)售的無(wú)人機(jī)有40多種。美國(guó)幾乎參加了世界上
所有重要的戰(zhàn)爭(zhēng)。由于它的科學(xué)技術(shù)先進(jìn),國(guó)力較強(qiáng),因而80多年來(lái),
世界無(wú)人機(jī)的發(fā)展基本上是以美國(guó)為主線向前推進(jìn)的。美國(guó)是研究無(wú)人機(jī)最早的國(guó)家之一,今天無(wú)論從技術(shù)水平還是無(wú)人機(jī)的種類(lèi)和數(shù)量來(lái)
看,美國(guó)均居世界首位。
綜觀無(wú)人機(jī)發(fā)展的歷史,可以說(shuō)現(xiàn)代戰(zhàn)爭(zhēng)是無(wú)人機(jī)發(fā)展的動(dòng)力,高新技術(shù)的發(fā)展是它不斷進(jìn)步的基礎(chǔ)。
◆水下機(jī)器人
水下機(jī)器人分為有人機(jī)器人和無(wú)人機(jī)器人兩大類(lèi):
有人潛水器機(jī)動(dòng)靈活,便于處理復(fù)雜的問(wèn)題,擔(dān)任的生命可能會(huì)有危險(xiǎn),而且價(jià)格昂貴。
無(wú)人潛水器就是人們所說(shuō)的水下機(jī)器人,“科夫”就是其中的一種。它適于長(zhǎng)時(shí)間、大范圍的考察任務(wù),近20年來(lái),水下機(jī)器人有了很大的發(fā)展,它們既可軍用又可民用。隨著人對(duì)海洋進(jìn)一步地開(kāi)發(fā),21世紀(jì)它們必將會(huì)有更廣泛的應(yīng)用。按照無(wú)人潛水器與水面支持設(shè)備(母船或平臺(tái))間聯(lián)系方式的不同,水下機(jī)器人可以分為兩大類(lèi):一種是有纜水下機(jī)器人,習(xí)慣上把它稱(chēng)做遙控潛水器,簡(jiǎn)稱(chēng)ROV;另一種是無(wú)纜水下機(jī)器人,潛水器習(xí)慣上把它稱(chēng)做自治潛水器,簡(jiǎn)稱(chēng)AUV。有纜機(jī)器人都是遙控式的,按其運(yùn)動(dòng)方式分為拖曳式、(海底)移動(dòng)式和浮游(自航)式三種。無(wú)纜水下機(jī)器人只能是自治式的,目前還只有觀測(cè)型浮游式一種運(yùn)動(dòng)方式,但它的前景是光明的。
◆空間機(jī)器人
空間機(jī)器人是一種低價(jià)位的輕型遙控機(jī)器人,可在行星的大氣環(huán)境中導(dǎo)航及飛行。為此,它必須克服許多困難,例如它要能在一個(gè)不斷變化的三維環(huán)境中運(yùn)動(dòng)并自主導(dǎo)航;幾乎不能夠停留;必須能實(shí)時(shí)確定它在空間的位置及狀態(tài);要能對(duì)它的垂直運(yùn)動(dòng)進(jìn)行控制;要為它的星際飛行預(yù)測(cè)及規(guī)劃路徑。
◆工業(yè)機(jī)器人
工業(yè)機(jī)器人是指在工業(yè)中應(yīng)用的一種能進(jìn)行自動(dòng)控制的、可重復(fù)編程的、多功能的、多自由度的、多用途的操作機(jī),能搬運(yùn)材料、工件或操持工具,用以完成各種作業(yè)。且這種操作機(jī)可以固定在一個(gè)地方,也可以在往復(fù)運(yùn)動(dòng)的小車(chē)上。
◆服務(wù)機(jī)器人
服務(wù)機(jī)器人是機(jī)器人家族中的一個(gè)年輕成員,到目前為止尚沒(méi)有一個(gè)嚴(yán)格的定義,不同國(guó)家對(duì)服務(wù)機(jī)器人的認(rèn)識(shí)也有一定差異。服務(wù)機(jī)器人的應(yīng)用范圍很廣,主要從事維護(hù)、保養(yǎng)、修理、運(yùn)輸、清洗、保安、救援、監(jiān)護(hù)等工作。德國(guó)生產(chǎn)技術(shù)與自動(dòng)化研究所所長(zhǎng)施拉夫特博士給服務(wù)機(jī)器人下了這樣一個(gè)定義:服務(wù)機(jī)器人是一種可自由編程的移動(dòng)裝置,它至少應(yīng)有三個(gè)運(yùn)動(dòng)軸,可以部分地或全自動(dòng)地完成服務(wù)工作。這里的服務(wù)工作指的不是為工業(yè)生產(chǎn)物品而從事的服務(wù)活動(dòng),而是指為人和單位完成的服務(wù)工作。
◆娛樂(lè)機(jī)器人
娛樂(lè)機(jī)器人以供人觀賞、娛樂(lè)為目的,具有機(jī)器人的外部特征,可以像人,像某種動(dòng)物,像童話(huà)或科幻小說(shuō)中的人物等。同時(shí)具有機(jī)器人的功能,可以行走或完成動(dòng)作,可以有語(yǔ)言能力,會(huì)唱歌,有一定的感知能力。
◆類(lèi)人機(jī)器人
從其他類(lèi)別的機(jī)器人可以看出,大多數(shù)的機(jī)器人并不像人,有的甚至沒(méi)有一點(diǎn)人的模樣,這一點(diǎn)使很多機(jī)器人愛(ài)好者大失所望。也許你會(huì)問(wèn),為什么科學(xué)家不研制類(lèi)人機(jī)器人?這樣的機(jī)器人會(huì)更容易讓人接受。其實(shí),研制出外觀和功能與人一樣的機(jī)器人是科學(xué)家們夢(mèng)寐以求的愿望,也是他們不懈追求的目標(biāo)。然而,研制出性能優(yōu)異的類(lèi)人機(jī)器人,其最大的難關(guān)就是雙足直立行走。因?yàn)?機(jī)器人與人的學(xué)習(xí)方式不一樣。一個(gè)嬰兒要先學(xué)走,再學(xué)跑;而機(jī)器人則要先學(xué)跑,再學(xué)走。也就是說(shuō)機(jī)器人學(xué)跑更容易些。
◆農(nóng)業(yè)機(jī)器人
由于機(jī)械化、自動(dòng)化程度比較落后,“面朝黃土背朝天,一年四季不得閑”成了我國(guó)農(nóng)民的象征。但近年農(nóng)業(yè)機(jī)器人的問(wèn)世,有望改變傳統(tǒng)的勞動(dòng)方式。在農(nóng)業(yè)機(jī)器人的方面,目前日本居于世界各國(guó)之首。
2 現(xiàn)狀及國(guó)際發(fā)展趨勢(shì)
國(guó)際機(jī)器人領(lǐng)域發(fā)展近幾年有如下幾個(gè)趨勢(shì):
(1)工業(yè)機(jī)器人性能不斷提高(高速度、高精度、高可靠性、便于操作和維修),而單機(jī)價(jià)格不斷下降,平均單機(jī)價(jià)格從91年的10.3萬(wàn)美元降至97年的6.5萬(wàn)美元。
(2)機(jī)械結(jié)構(gòu)向模塊化、可重構(gòu)化發(fā)展。例如關(guān)節(jié)模塊中的伺服電機(jī)、減速機(jī)、檢測(cè)系統(tǒng)三位一體化;由關(guān)節(jié)模塊、連桿模塊用重組方式構(gòu)造機(jī)器人整機(jī);國(guó)外已有模塊化裝配機(jī)器人產(chǎn)品問(wèn)市。
(3)工業(yè)機(jī)器人控制系統(tǒng)向基于PC機(jī)的開(kāi)放型控制器方向發(fā)展,便于標(biāo)準(zhǔn)化、網(wǎng)絡(luò)化;器件集成度提高,控制柜日見(jiàn)小巧,且采用模塊化結(jié)構(gòu);大大提高了系統(tǒng)的可靠性、易操作性和可維修性。
(4)機(jī)器人中的傳感器作用日益重要,除采用傳統(tǒng)的位置、速度、加速度等傳感器外,裝配、焊接機(jī)器人還應(yīng)用了視覺(jué)、力覺(jué)等傳感器,而遙控機(jī)器人則采用視覺(jué)、聲覺(jué)、力覺(jué)、觸覺(jué)等多傳感器的融合技術(shù)來(lái)進(jìn)行環(huán)境建模及決策控制;多傳感器融合配置技術(shù)在產(chǎn)品化系統(tǒng)中已有成
熟應(yīng)用。
(5)虛擬現(xiàn)實(shí)技術(shù)在機(jī)器人中的作用已從仿真、預(yù)演發(fā)展到用于過(guò)程控制,如使遙控機(jī)器人操作者產(chǎn)生置身于遠(yuǎn)端作業(yè)環(huán)境中的感覺(jué)來(lái)操縱機(jī)器人。
(6) 當(dāng)代遙控機(jī)器人系統(tǒng)的發(fā)展特點(diǎn)不是追求全自治系統(tǒng),而是致力于操作者與機(jī)器人的人機(jī)交互控制,即遙控加局部自主系統(tǒng)構(gòu)成完整的監(jiān)控遙控操作系統(tǒng),使智能機(jī)器人走出實(shí)驗(yàn)室進(jìn)入實(shí)用化階段。美國(guó)發(fā)射到火星上的“索杰納”機(jī)器人就是這種系統(tǒng)成功應(yīng)用的最著名實(shí)例。
(7)機(jī)器人化機(jī)械開(kāi)始興起。從94年美國(guó)開(kāi)發(fā)出“虛擬軸機(jī)床”以來(lái),這種新型裝置已成為國(guó)際研究的熱點(diǎn)之一,紛紛探索開(kāi)拓其實(shí)際應(yīng)用的領(lǐng)域。
3仿真和控制式機(jī)器人介紹
機(jī)器人的圖像和公眾感知能力受到科幻小說(shuō)家和娛樂(lè)產(chǎn)業(yè)極端視角的的限制并不是很久以前的事兒。然而,如今閱讀一本有意思的有關(guān)近代機(jī)器人學(xué)的文章,晚間新聞時(shí)觀看火星表面探索,或者甚至在工作場(chǎng)所遇到一個(gè)機(jī)器人仍然是不普遍的。隨著機(jī)器人逐漸進(jìn)入我們的日常生活中,它們?cè)谟幸嬗谏鐣?huì)的作用中越來(lái)越明顯。尤為明顯的是在一些危險(xiǎn)環(huán)境中一個(gè)或多個(gè)機(jī)器人能夠代替人類(lèi)進(jìn)行工作。已經(jīng)引起了機(jī)器人社團(tuán)的興趣的研究領(lǐng)域是在機(jī)器人的搜救過(guò)程中的操作。在一個(gè)危險(xiǎn)的環(huán)境中搜救機(jī)器人的操作需要搜救人員的巨大努力才能完成。建筑物的倒塌和不穩(wěn)定,煤氣的泄漏和火災(zāi)對(duì)人類(lèi)搜救隊(duì)僅僅是一小部分的威脅。相對(duì)于人類(lèi)發(fā)展自主式機(jī)器人的能力對(duì)于搜救存活者提供會(huì)很大的便利。
用機(jī)器人取代人類(lèi)所需要解決的潛在問(wèn)題有:
哪種機(jī)器人能夠在一種未知的和變化著的環(huán)境中高速移動(dòng)?
在一次搜救操作過(guò)程中要想大面積的覆蓋搜救區(qū)域大概需要多少機(jī)器人?
這些機(jī)器人怎樣控制?
機(jī)器人是一個(gè)極其寬廣的領(lǐng)域它包括各種各樣的應(yīng)用及研究興趣。從過(guò)去的工廠裝配線上的機(jī)器人到火星探索和國(guó)家宇航局,機(jī)器人的視覺(jué)和用途看起來(lái)無(wú)窮無(wú)盡。機(jī)器人這個(gè)詞的定義本身就是依賴(lài)于誰(shuí)給它下的定義和他所預(yù)期達(dá)到的結(jié)果。為達(dá)到我們的目的,一個(gè)智能機(jī)器人就被定義為:一個(gè)機(jī)器能夠以一種有意義有目的的方式進(jìn)行安全的移動(dòng)并從它所在的環(huán)境中提取正確的信息。大部分的研究者把控制自動(dòng)化機(jī)器人的方法分為三大類(lèi):協(xié)商,反應(yīng)以及混合系統(tǒng)。協(xié)商方法是智能任務(wù)能夠在一個(gè)內(nèi)部模擬世界中通過(guò)推理的方法得以完成。這種控制人工智能社群多年的方法導(dǎo)致了由美國(guó)政府在1980年代開(kāi)發(fā)的一種標(biāo)準(zhǔn)建筑學(xué)的發(fā)展,它體現(xiàn)了一種協(xié)商的模型。美國(guó)麻省理工學(xué)院實(shí)驗(yàn)室的主任羅德尼布魯克斯指出協(xié)商模型可以作為一個(gè)感官-模型-計(jì)劃-指令的框架。
機(jī)器人社區(qū)開(kāi)始對(duì)反應(yīng)系統(tǒng)感興趣的時(shí)候是在1980年代的中期,出現(xiàn)最多的問(wèn)題是移動(dòng)機(jī)器人的協(xié)商控制變得更加明顯了。具體地說(shuō),協(xié)商控制系統(tǒng)出現(xiàn)許多明顯的不足之處,比如脆性,屈服性以及在操作復(fù)雜不斷變化的環(huán)境中響應(yīng)慢。響應(yīng)速度在協(xié)商系統(tǒng)中是一個(gè)極為關(guān)鍵的一點(diǎn)。南加州大學(xué)的馬瑞克指出主要?jiǎng)澐譃榉磻?yīng)和協(xié)商系統(tǒng)之間能夠在計(jì)算量和類(lèi)型的基礎(chǔ)上進(jìn)行描繪。
反應(yīng)體系結(jié)構(gòu)和行為建筑經(jīng)常被認(rèn)為是一樣的。然而,極端存在被認(rèn)為是基本后者是多么復(fù)雜的一種系統(tǒng)雖然仍舊被認(rèn)為是無(wú)用的,瑪瑞克認(rèn)為反應(yīng)體系結(jié)構(gòu)和行為建筑有著根本的區(qū)別。她提出說(shuō)雖然行為基礎(chǔ)系統(tǒng)包含一種特征甚至是一種純粹的反應(yīng)系統(tǒng)的元素,但它們的計(jì)算并不需要限制。通過(guò)這種方式,行為系統(tǒng)可以?xún)?chǔ)存不同的形態(tài)以及實(shí)現(xiàn)不同的表述。此外,她指出行為系統(tǒng)要比一個(gè)反應(yīng)系統(tǒng)更加需要時(shí)間的延長(zhǎng)。
隨著對(duì)反應(yīng)系統(tǒng)興趣的增長(zhǎng),研究人員試圖通過(guò)使用機(jī)械和計(jì)算系統(tǒng)來(lái)模仿生物系統(tǒng)以達(dá)到完成預(yù)期任務(wù)的目的。艾瑞克描述了神經(jīng)學(xué)是“為理解和建模生物行為潛在的電路提供一個(gè)基礎(chǔ)?!彼赋鲆恍┬睦韺W(xué)派已經(jīng)影響機(jī)器人的研究好多年了。實(shí)際上這些行為的研究對(duì)機(jī)器人
學(xué)的研究打下了一個(gè)堅(jiān)實(shí)的基礎(chǔ)。這個(gè)研究的方法是在觀察的基礎(chǔ)上考慮任何的刺激以及作出的反應(yīng)。
最近,生物行為的研究已經(jīng)擴(kuò)大到世界的多智能體系結(jié)構(gòu),社會(huì)生物學(xué)的研究專(zhuān)家已經(jīng)使用了幾組移動(dòng)式機(jī)器人進(jìn)行研究和模擬??八_斯大學(xué)的艾瑞克研在機(jī)器人代理好惡的程度下使用TSCA研究個(gè)人和集體機(jī)器人的學(xué)習(xí)能力。在這方面領(lǐng)域的一些工作還依賴(lài)墜螞蟻和蜜蜂繁殖地的觀察,以及僅有限的個(gè)人代理體系信息中完成完成全球任務(wù)。
最近十年,研究人員開(kāi)始關(guān)注由多個(gè)不同性質(zhì)機(jī)器人組成的多機(jī)器人系統(tǒng)來(lái)完成一個(gè)或多個(gè)任務(wù)。使用這些分布式機(jī)器人的好處是,高強(qiáng)度,高韌性,分布自然而且更加精簡(jiǎn)。
4 模擬器的執(zhí)行
4.1 世界情況
在每一次仿真的開(kāi)始,規(guī)定的戶(hù)外運(yùn)動(dòng)是“畫(huà)”300×300的矩陣。所有的墻和跳線都是放在陣列的開(kāi)始位置,接下來(lái)將機(jī)器人放在現(xiàn)有的數(shù)組陣列中。在大多數(shù)情況下,機(jī)器人是放置在含有零值數(shù)值中運(yùn)行的。然而,如果一個(gè)跳線首先占據(jù)了這個(gè)位置,在第六個(gè)和第八個(gè)值之間插入機(jī)器人值就表明這個(gè)位置包含了一根跳線。
4.2 機(jī)器人傳感
用于機(jī)器人傳感的方法類(lèi)似于碰撞檢測(cè)的應(yīng)用。感應(yīng)的是通過(guò)檢測(cè)機(jī)器人周?chē)藗€(gè)方向的數(shù)值來(lái)完成的。隨著每個(gè)單位時(shí)間的流逝,模擬器從機(jī)器人中心開(kāi)始向前的方向每45o角來(lái)檢查數(shù)組元素。例如,感應(yīng)范圍是50個(gè)單元,模擬器檢查每一數(shù)組單位都是沿著機(jī)器人中心0
o.45o,90o,135o,180o,225o,270o以及315o線(如果延伸方向恰好是0o線)。
感應(yīng)從機(jī)器人中心開(kāi)始每單位+1,并沿著感應(yīng)線繼續(xù)下去直到觸碰到墻壁或達(dá)到機(jī)器人的感應(yīng)范圍極限。如果一個(gè)單位被檢測(cè)到,距離單位和相關(guān)的實(shí)體價(jià)值被放置在一個(gè)數(shù)組中的數(shù)據(jù)中,直到檢測(cè)到一個(gè)試題或達(dá)到了機(jī)器人感應(yīng)的范圍。機(jī)器人感官沿著傳輸線傳到下一個(gè)感應(yīng)器。這樣一直繼續(xù)下去直到所有的感應(yīng)線都被檢測(cè)完成,一旦完成,接收到的數(shù)組數(shù)據(jù)就表明了機(jī)器人的感官世界,然后就形成一個(gè)確定的規(guī)則來(lái)指導(dǎo)機(jī)器人的行為。
4.3 匹配規(guī)則
一個(gè)機(jī)器人的行為是在他的規(guī)律集中完成感官數(shù)組數(shù)據(jù)和其中的一個(gè)特定規(guī)律的匹配之后進(jìn)行選擇的。這種變化類(lèi)似于經(jīng)典的兒童游戲。機(jī)器人接收到的數(shù)據(jù)可以被認(rèn)為是一個(gè)操作者對(duì)運(yùn)動(dòng)軌跡最初的猜測(cè)。這些猜測(cè)被放置在對(duì)手的場(chǎng)地中進(jìn)行試驗(yàn)一來(lái)獲得得分。這么做是為了規(guī)則集中的每一點(diǎn)都能涉及到。這個(gè)規(guī)則用的最多的地方就是決定一個(gè)比賽的規(guī)則。規(guī)則分?jǐn)?shù)是保存在一個(gè)單獨(dú)得分陣列中。
對(duì)于每一個(gè)單位和得到的感官數(shù)組數(shù)據(jù)的完整實(shí)體,確定匹配功能是當(dāng):
距離屬于在規(guī)則中指定的相關(guān)的傳感器的距離范圍。
在感官數(shù)組數(shù)據(jù)中的實(shí)體價(jià)值與規(guī)則中的實(shí)體價(jià)值相匹配。
如果滿(mǎn)足上述條件,規(guī)則值就會(huì)增加一,否則規(guī)則值就會(huì)減少一。下面的例子就顯示了最初的得分:
.從前面的傳感器所得到的數(shù)據(jù)可以得到距離20和四個(gè)實(shí)體值。
.規(guī)則X前面的距離值是10到30以及規(guī)則值是4.
.規(guī)則X的評(píng)分規(guī)則是逐一增加,這是因?yàn)?0位于10和30之間同時(shí)要求實(shí)體數(shù)據(jù)匹配。
4.4. 偏差和本能
如果一個(gè)規(guī)則收到相同的分?jǐn)?shù)作為最后的贏家,一個(gè)行動(dòng)的偏差就決定了機(jī)器人最后的行為功能。如果規(guī)則和當(dāng)前的獲勝者具有相同的行為價(jià)值,那么就沒(méi)有必要利用偏差;然而,如果這兩個(gè)有把不同的動(dòng)作值偏差,那么,這個(gè)偏差就用來(lái)確定最后的行為動(dòng)作。偏差是機(jī)器人采取最終行動(dòng)所需要的一個(gè)整數(shù)變量保存價(jià)值。如果一個(gè)規(guī)則與之有關(guān)的分?jǐn)?shù)不同于當(dāng)前的贏家,那么規(guī)則的行為就與偏差有所區(qū)別。如果兩值相等,那么這個(gè)規(guī)則就會(huì)被采用,否則就保持當(dāng)前的贏家不變。
對(duì)待打成平局的方法是機(jī)器人重復(fù)當(dāng)前的動(dòng)作。這個(gè)現(xiàn)象的原因是在機(jī)器人行為的基礎(chǔ)上強(qiáng)加了一些限定的連續(xù)性。
貫穿仿真的整個(gè)過(guò)程中機(jī)器人可能報(bào)廢的一些原因有:
*無(wú)休止的來(lái)回切換兩個(gè)活動(dòng);
*多次阻礙前進(jìn);
*無(wú)期限的重復(fù)同樣的動(dòng)作。
4.5 評(píng)價(jià)
一個(gè)機(jī)器人隊(duì)的性能評(píng)估是在一次仿真中用戶(hù)自定義時(shí)間限制中實(shí)現(xiàn)的。這個(gè)表現(xiàn)是在一定的平臺(tái)中按機(jī)器人進(jìn)入房間百分比測(cè)量的。此外機(jī)器人完全進(jìn)入這個(gè)平臺(tái)時(shí)就完成了總覆蓋率的考慮。這些值是用來(lái)確定機(jī)器人搜救隊(duì)的性能的,同時(shí)也被當(dāng)做遺傳算法的最合適的規(guī)則集。
這個(gè)模擬器記住了機(jī)器人進(jìn)入的每一個(gè)房間的列表,這些數(shù)據(jù)也只是用于團(tuán)評(píng)價(jià)并不能協(xié)助機(jī)器人進(jìn)行仿真實(shí)驗(yàn)。一旦時(shí)間到了,得到的有關(guān)房間的數(shù)據(jù)就用來(lái)測(cè)量機(jī)器人所達(dá)到的覆蓋率。如果兩個(gè)或更多的機(jī)器人進(jìn)入了同一個(gè)房間,模擬器中就會(huì)出現(xiàn)一系列的房間列表,然而重復(fù)的努力并不影響對(duì)機(jī)器人性能的評(píng)價(jià)。
5仿真實(shí)驗(yàn)
在一系列的仿真實(shí)驗(yàn)中,遺傳算法通常用于搜救機(jī)器人隊(duì)的規(guī)則設(shè)置。遺傳算法包括復(fù)制,交叉和變異這三個(gè)步驟。繁殖的過(guò)程中染色體的字符串代表個(gè)人復(fù)制并根據(jù)他們的健康水平創(chuàng)建一種新的生物字串。
擁有更好健康價(jià)值的人則更可能被用來(lái)創(chuàng)造下一代。交叉的過(guò)程包括兩個(gè)字符串的選擇,以及兩者之間字符串短的交換。遺傳算法的最后步驟是突變,提出了一種價(jià)值隨著字符串位置改變而隨機(jī)變化的理論。
在留有記錄的實(shí)驗(yàn)中,規(guī)則集被轉(zhuǎn)換為二進(jìn)制的字符串,以及在最短的時(shí)間里條件合適的機(jī)器人就被計(jì)算為規(guī)則集機(jī)器人以達(dá)到對(duì)周?chē)h(huán)境最大的報(bào)道覆蓋率。
6總結(jié)
本文所提出的仿真程序已經(jīng)被用于超過(guò)300次的仿真實(shí)驗(yàn)中。該模擬器為測(cè)試不同機(jī)器人的行為和眾多機(jī)器人調(diào)查小組提供了充分的工具。最初的實(shí)驗(yàn)結(jié)果表明機(jī)器人團(tuán)隊(duì)的成績(jī)可以改變對(duì)機(jī)器人的規(guī)模。然而剛開(kāi)始的時(shí)候團(tuán)隊(duì)尺寸一度達(dá)到12-14.一些小的機(jī)器人團(tuán)隊(duì),在有限的時(shí)間里分配到的區(qū)域范圍對(duì)進(jìn)入的團(tuán)隊(duì)人數(shù)有一個(gè)明顯的限制。此外,團(tuán)隊(duì)規(guī)模的擴(kuò)大,團(tuán)隊(duì)成員的增加互動(dòng)增多所產(chǎn)生的結(jié)果將會(huì)影響大中型團(tuán)隊(duì)。從交叉測(cè)試的結(jié)果顯示使用不同規(guī)模大小的團(tuán)隊(duì)進(jìn)化為一個(gè)特定的團(tuán)隊(duì)就顯示了所有的情況,在機(jī)器人規(guī)則下轉(zhuǎn)變來(lái)的不同大小的隊(duì)伍從來(lái)都不如團(tuán)隊(duì)規(guī)模更適合進(jìn)行演化。但這并不意味著使用規(guī)則集演化而來(lái)的團(tuán)隊(duì)是完全無(wú)效的。規(guī)則集大小對(duì)機(jī)器人團(tuán)隊(duì)成績(jī)的影響就目前而言還需要進(jìn)行更深的調(diào)查。
有關(guān)模擬方案規(guī)劃的未來(lái)工作是提高機(jī)器人的數(shù)量從而來(lái)提高機(jī)器人演化和測(cè)試的工作環(huán)境,未來(lái)的研究應(yīng)該包括不同環(huán)境平臺(tái)的尺寸和大小。此外,尚在研究過(guò)程的機(jī)器人團(tuán)隊(duì)和他們的規(guī)則集可以從一個(gè)環(huán)境遷移到另一個(gè)環(huán)境中,甚至可以為新一代的機(jī)器人隨機(jī)選取一個(gè)環(huán)境平臺(tái)。仿真系統(tǒng)的最終目標(biāo)是作為一個(gè)工具便于更好的設(shè)計(jì),開(kāi)發(fā)和部署搜救機(jī)器人以協(xié)助搜救任務(wù)的完成。
7.出處
這項(xiàng)工作是國(guó)家科學(xué)基金會(huì)的一部分。
8.參考文獻(xiàn)
[1]阿加貝克發(fā)表的人機(jī)交互機(jī)器人系統(tǒng),出自《自動(dòng)化機(jī)器人》
[2]美國(guó)機(jī)械工程師協(xié)會(huì)合作機(jī)器人
[3]阿金鮑爾的機(jī)器人合作系統(tǒng)
[4]《行為機(jī)器人》 麻薩諸塞州,麻省理工學(xué)院出版社1998年出版。
[5]布魯克斯,《非理性智能》,人工智能實(shí)驗(yàn)室
[6]布魯克斯,移動(dòng)式機(jī)器人一個(gè)強(qiáng)大的分層控制系統(tǒng),人工智能實(shí)驗(yàn)室。
[7]如何使用《c++編程》 作者,帶特爾普。1998年新澤西出版社出版。
[8]碩士學(xué)位論文《機(jī)器人搜索隊(duì)的大腦行為進(jìn)化》,作者 多拉希德,堪薩斯大學(xué)電氣工程與計(jì)算機(jī)科學(xué)系,2000年發(fā)表
[9]領(lǐng)土的多機(jī)器人劃分 1998年發(fā)表于機(jī)器人自動(dòng)化雜志
[10]戈德伯格《搜索,優(yōu)化,機(jī)械學(xué)習(xí)方面的遺傳算法,1998年 高等教育出版社出版
[11]梅斯 《位置代理目標(biāo)》 出自機(jī)器人技術(shù)系統(tǒng)
[12]馬塔里奇《行為控制,導(dǎo)航,學(xué)習(xí)和群體行為的實(shí)例》霍斯威爾,科爾堂岡,編輯 ,出自人工智能實(shí)驗(yàn)室軟件架構(gòu)專(zhuān)題
[13]麥盧金·《利用合作機(jī)器人排爆》 人工智能實(shí)驗(yàn)室。
14
河南理工大學(xué)萬(wàn)方科技學(xué)院本科畢業(yè)設(shè)計(jì)
英語(yǔ)文獻(xiàn)翻譯
Simulation and control of distributed robot search teams
1.Robot introduction
Several thousand years ago the humanity longed for that makes one kind of elephant person's same machine, in order to extricates the humanity from the arduous work. If the ancient Greece poet Homeros lengthy narrative poem "Yiliyate" god of lame sea time of Si Tesi smelting, uses the gold casting to have a beautiful intelligent maidservant; Greek mythology "Lu Elder brother Discovery ship" bronze giant Tailuosi (Taloas); Judea in fable's soil giant and so on, these beautiful myth times were driving the people must certainly become the beautiful myth the reality, as early as started before two millenniums to present the automatic wooden figurine and some simple mechanical figurines. to the modern times, in after a robot word's appearance and the world the first industry robot comes out, the different function's robot also one after another appears, and enlivened in the different domain, from the space to the underground, developed from the industry broadly to the agriculture, the forest, the herd, the fishing, even entered the common family. Robot's many type, broad application, affects the depth, is we are unexpected. Divides from robot's use, may divide into two broad headings:
? ground military robot
The ground robot is mainly refers to the intelligence or the remote control wheeled and the track-laying vehicle. The ground military robot may divide into the independent vehicles and half independent vehicles. The independent vehicles depend upon the own intelligent autonomous navigation, the avoidance obstacle, the independence complete each kind of combat mission; Half independent vehicles may exercise independently under person's surveillance, when encounters the difficulty the operators may carry on the remote control intervention.
? unmanned aerial vehicle
Is called the airborne robot's unmanned aerial vehicle is in the military robot develops the quickest family, the first autopilot has been published since 1913, unmanned aerial vehicle's fundamental type has achieved 300 many kinds, at present the unmanned aerial vehicle which sells in the world market has 40 many kinds. The US participated in nearly the world all important wars. Is advanced as a result of its science and technology, the national strength is strong, thus 80 for many years, the world unmanned aerial vehicle's development basically has been prompts forward by the line. The US studies one of unmanned aerial vehicle earliest countries, regardless of today looking from technical level or unmanned aerial vehicle's type and quantity, the US occupies the world leader. the comprehensive survey unmanned aerial vehicle develops the history, may say that the modern warfare is the power which the unmanned aerial vehicle develops, the high technology and new technology development is the foundation which it progresses unceasingly.?
? underwater robot
The underwater robot divides into some person of robots and nobody robot two broad headings:
Some person of submersibles mobile nimble, is advantageous for the processing complex question, holds the post the life will possibly have the danger, moreover the price will be expensive. The unmanned submersible is the underwater robot which the people said that “Shinao” is one kind. It is suitable for the long time, the wide range inspection duty, in the recent 20 years, the underwater robot had the very big development, they both may military and be possible civil. Further develops along with the human to the sea, in the 21st century they will certainly to have a more widespread application. According to the unmanned submersible and the water surface support equipment (depot ship or platform) contact method's difference, the underwater robot may divide into two broad headings: One kind has the cable underwater robot, in the custom is called as it controls remotely the submersibles, is called ROV; Another kind does not have the cable underwater robot, in the submersibles custom is called as it the autonomous submersibles, is called AUV. Has the cable robot is the remote control type, divides into towed, (seabed) according to its mode of motion the mobile and the float (from navigation) the formula three kinds. Does not have the cable underwater robot only to be able to be autonomous -like, at present also only then the observation float type one mode of motion, but its prospect is bright.
? spatial robot
The spatial robot is one kind of low end light teleoperator, may in the planet atmospheric environment the guidance and the flight. Therefore, it must overcome many difficulties, for example it must be able, in changes unceasingly in three dimensional environment movement and autonomous navigation; Cannot pause nearly; Must be able real-time to determine it in the spatial position and the condition; Must be able to carry on the control primarily to the American its vertical movement; Must forecast and plan the way for its star border flight.?
? industry robot
The industry robot is refers to the industry the application one kind can carry on the automatic control, to be possible to duplicate programs, multi-purpose, the multi-degrees-of-freedom, the multipurpose operation machine, can transport the material, the work piece or manages the tool, with completes each kind of work. And this kind of operation machine may fix in a place, may also on the reciprocal motion car.
? service robot
The service robot is in a robot family's young member, so far still did not have a strict definition, the different country to serves robot's understanding also to have certain difference. Serves robot's application scope to be very broad, is mainly engaged in work and so on maintenance, maintenance, repair, transportation, clean, security, rescue, guardianship. The German production technology and Institute of Automation manager executed Dr. Lafute for to serve the robot to give this kind of definition: Serves the robot is the shifter which one kind may program freely, it should have three motive axles at least, may partially or the completely automatic completes the services. Here services refer to are not the servicing activities which is engaged in for the industrial production goods, but refers to the services which the manner and the unit complete.
? entertainment robot
The entertainment robot take watches, the entertainment for the human as a goal, has robot's exterior characteristic, may look like the human, some kind of animal, looks like in the fairy tale or the science fiction character likely and so on. Simultaneously has robot's function, may walk or complete the movement, may have the verbal skill, will sing, has certain sensation ability.
? kind of person robot
May see from other category's robot, the majority robots do not look like the human, some do not even have a person's appearance, this point to cause many robot amateurs to be greatly disappointed. Perhaps you will ask, for system class person robot? Such robot will be easier to let the human accept. Actually, develops the outward appearance and the function and person's same robot is the desire which the scientists long for even in dreams, is also the goal which they pursue unremittingly.
However, develops the performance outstanding kind of person robot, its biggest difficulty is both feet erectness walks. Because the robot and person's study way is dissimilar. A baby wants to study first walks, then studies runs; But the robot must study first runs, then studies walks. That is the robot study runs easier.
? agricultural robot
Because the mechanization, the automaticity are quite backward, “the surface faces upwards toward the loess back, did not have time throughout the year” has become our country farmer's symbol. But recent years agricultural robot's being published, hopefully changed traditional the work way. In the agricultural robot's aspect, Japan resides in head at present the various countries.
2.present situation and domestic and foreign trend of development
The overseas robot domain development has the following several tendencies in recent years:
(1) the industry robot performance enhances (high velocity, high accuracy, redundant reliability, to be advantageous for operation and service) unceasingly, but the single plane price drops unceasingly, the average single plane price drops to 97 year 65,000 US dollar from 91 year 103,000 US dollar.
(2) the mechanism to the modulation, may the restructuring development. For example in joint module servo electrical machinery, speed reducer, examination system Trinity body; By the joint module, the connecting rod module use the reorganization way structure robot complete machine; Overseas had the modular assembly robot product to ask the city
(3) the industry robot control system to develops based on the PC machine open-type controller direction, is advantageous for the standardization, the network; The component integration rate enhances, the control cubicle date sees exquisitely, and uses the modular structure; Enhanced system's reliability greatly, easy operational and the maintainability.
(4) in robot's sensor function is day by day important, besides uses sensors and so on traditional position, speed, acceleration, the assembly, welded the robot also to apply the vision, the strength to think and so on sensors, but the teleoperator used the vision, the sound sensation, the strength sleep, the sense of touch and so on multi-sensor's fusion technologies to carry on the environment modelling and the policy-making control; The multi-sensor fusion disposition technology had the mature application in the production system.
(5) virtual reality technology in robot's function from the simulation, the preview has developed to uses in the process control, if causes the teleoperator operator to produce places oneself operates the robot in the far-end job environment feeling.
(6) present age teleoperator system's development characteristic pursues the entire autonomous system, but devotes to the operator and robot's man-machine interaction control, namely the remote control adds the partial independent system constitution complete monitoring remote control system, causes the intelligent robot to go out the laboratory to enter the practical stage. The US launches on Mars “Sojourner” the robot is this kind of system success application most famous example.
(7) machine hominization machinery starts to emerge. Has developed “the hypothesized axis engine bed” since 94 year US, this kind of new installment has become one of international research hot spots, explores in abundance develops its practical application the domain.
3.The Introduction of Simulation and control of distributed robot
It was not long ago when the images and public perception of robots were limited to the extreme visions created by science fiction writers and the entertainment industry. However, today it is not uncommon to read an interesting article about recent advances in robotics, watch a robot search the surface of Mars on the nightly news, or even possibly encounter one in the work place . As robots make such inroads into our daily lives, it becomes increasingly apparent how they can benefit society. Nowhere is this more evident than in situations where one or more robots could replace humans in a dangerous situation. One area of study, which has recently piqued the interest of the robotics community, is the use of robots in search and rescue operations. Search and rescue operations require a massive effort by rescuers in very dangerous environments. Collapsed and unstable buildings, leaking gas lines, and fire are only a few of the things that pose a threat to the lives of human rescue teams. The ability to deploy autonomous robots, as opposed to humans into this type of environment to search for survivors provides immeasurable benefits.
The potential for using robots in place of humans requires addressing questions such as:
(1) What type of robot can move effectively in an unknown and dynamic environment?
(2) How many robots should be used to emciently cover the most area in a search operation?
(3) How should the robot be controlled?
Robotics is an extremely broad field encompassing a variety of applications and research interests. From the robots used on factory assembly lines to those conducting Mars exploration or NASA , there are seemingly endless possibilities relating to the visions and uses of robotics. The definition of the word robot is itself dependent upon both who is defining it and its intended context. For our purposes ,an intelligent robot is defined as: "A machine able to extract information from its environment and use knowledge about its world to move safely in a meaningful and purposive manner" 。
Most researchers agree that the methods used for controlling autonomous robots can be divided into three general categories: deliberative, reactive, and hybrid systems. The deliberative approach is a strategy where intelligent tasks can be implemented by a reasoning process operating on an internal model of the world. This approach
dominated the artificial intelligence community for years resulting in the development of a standard architecture by the US Government in the 1980s, which reflected the deliberative model. Rodney Brooks. Director of the Massachusetts Institute of Technology's Artificial Intelligence Laboratory, refers to deliberative architectures as a sense-model-plan-act (SMPA) framework .
The robotics community began to take interest in reactive systems in the mid 1980s, as many of the shortcomings of deliberative control for mobile robots became apparent. Specifically, deliberative autonomous systems displayed a number of deficiencies such as brittleness, inflexibility, and slow response times when operating in complex and dynamic environments. Speed of response was a key weakness for deliberative systems. Maja Mataric of the University of Southern California suggests that the primary division "between reactive and deliberative strategies can be drawn based on the type and amount of computation performed at run-time."
Reactive architectures and behavior-based architectures are most often considered identical. However, extremes exist regarding how basic or how complex a system can become while still being classified as reactive or behavior-based. Mataric contends that there is a fundamental difference between reactive and behavior-based systems . She suggests that though behavior- based systems contain properties or even components of a purely reactive system, their computation need not be as limited. In this way, behavior-based systems can store various forms of state and can implement different representations. Furthermore, she suggests that behaviors are more time-extended than the reflexive actions of a reactive system.
As interest in reactive systems grew, researchers inevitably attempted to mimic biological systems using machinery and computational systems for the purposes of accomplishing a desired task. Arkin describes how neuroscience "provides a basis for understanding and modeling the underlying circuitry of biological behavior." He points out that a number of psychological schools of thought have inspired robotics researchers over the years. In particular, the study of behaviorism has secured a solid foundation within robotics. This method of study is based upon observation only in which everything is considered in terms of stimulus and response.
Recently, this study of biological behavior has extended into the world of multi-agent systems. Sociobiological behaviors have been studied and emulated using groups of mobile robots. Arvin Agah of the University of Kansas examined individual and collective robot learning using a Tropism System Cognitive Architecture based on the likes and dislikes of the robot agents.Some of the work in this area has relied upon observations of ant and bee colonies and their ability to carry out global tasks using the limited local information of individual agents within the system.
Within the last decade. researchers have begun to focus on robotic systems consisting of multiple robots, either homogeneous or heterogeneous, to accomplish one or more tasks. Some of the advantages of using distributed robotics consist of robustness, flexibility, distributed nature, and more simplified robots.
4. Simulator implementation
4. 1. The world
At the beginning of every simulation, the specified floorplan is 'drawn' into the 300 x 300 array. A1l walls and trip wires are first placed in the array. Next, the robots are positioned over the existing array. In most cases, robots are placed over array elements containing zero values. However, if a trip wire first occupies the position, the robot value inserted into the array element is between six and eight indicating that the space contained a trip wire .
4.2. Robot sensing
The method used for robot sensing is similar to that applied to collision detection.
Sensing is accomplished by checking the values of the environment array in eight directions around the center of a robot. With every unit of time that passes, the simulator checks array elements within a specified range for every 45o about the
robot's center starting at the angle of forward direction. For instance. if the sensing range is 50 units, the simulator checks every array element between radius + I and 50 units along the lines 0o, 45o, 90o, 135o, 180o, 225o, 270o. and 315o 0f the robot's center (if the forward direction happened to be 0o).
Sensing begins at the element radius+ 1 from the center of a robot and continues down the sensing line until a robot or wall is detected or the end of the sensing range is reached. If an entity is detected,the distance to the entity and the associated entity value are placed into an array for the sensed data .Once an entity is detected or the end of the sense range is reached. The robot senses along the line of the next sensor. This continues until all sensing lines have been checked. Once complete, the sensed data array represents the robot's sensed world, which can then be mapped to a specific rule to determine a robot's action.
4.3. Matching rules
A robot's action is selected after matching its sensed data array to a specific rule in its rule set. This mapping is analogous to playing the classic children's game. The sensed data can be thought of as a player's guess as to where their opponent's ships lie. These guesses are then placed over the opponent's playing field and hits are scored. This is done for every rule in the rule set. The rule that takes the most hits is determined to be a match. Rule scores are maintained in a separate scoring array.
For each distance and entity entry in the sensed data array , the matching function determines if:
The distance falls with the range specified by the distance values for the associated sensor inthe rule.
The entity value in the sensed data array matches the entity value in the rule.
If the above criteria are met, the rule score is increased by one; otherwise, the rule score decreases by one. The following example illustrates initial scoring:
. The Front sensor of the sensed data shows a distance of 20 and entity value of four。
. The Front distance values for Rule X are 10 and 30 and the entity value is four.
. The rule score for Rule X is increased by one because 20 is between 10 and 30 and the entity values match.
4. 4 Bias and instincts
In case a rule receives the same score as the current winner. an action bias has been imposed to determine the final action for the robot. If the rule and current winner contain the same action value. there is no need to utilize the bias; however, should the two have differe