2019年高考數(shù)學(xué)二輪復(fù)習(xí) 直線與圓.doc
《2019年高考數(shù)學(xué)二輪復(fù)習(xí) 直線與圓.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)二輪復(fù)習(xí) 直線與圓.doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019年高考數(shù)學(xué)二輪復(fù)習(xí) 直線與圓 1.(xx浙江高考)已知圓x2+y2+2x-2y+a=0截直線x+y+2=0所得弦的長(zhǎng)度為4,則實(shí)數(shù)a的值是( ) A.-2 B.-4 C.-6 D.-8 【解析】 圓的標(biāo)準(zhǔn)方程為(x+1)2+(y-1)2=2-a ∴圓心坐標(biāo)(-1,1) 半徑r2=2-a,圓心到直線x+y+2=0的距離 d== ∴22+()2=2-a,解得a=-4. 【答案】 B 2.(xx福建高考)直線l:y=kx+1與圓O:x2+y2=1相交于A,B兩點(diǎn),則“k=1”是“△OAB的面積為”的( ) A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分又不必要條件 【解析】 若k=1,則S△ABC=,若S△ABC=,則k=1或k=-1,故選A. 【答案】 A 3.(xx湖南高考)若圓C1:x2+y2=1與圓C2:x2+y2-6x-8y+m=0外切,則m=( ) A.21 B.19 C.9 D.-11 【解析】 C1的圓心為(0,0),半徑r=1,C2的圓心為(3,4),半徑R=,又∵|C1C2|=5, 由題意知5=1+, ∴m=9,故選C. 【答案】 C 4.(xx陜西高考)若圓C的半徑為1,其圓心與點(diǎn)(1,0)關(guān)于直線y=x對(duì)稱(chēng),則圓C的標(biāo)準(zhǔn)方程為_(kāi)_______. 【解析】 因?yàn)辄c(diǎn)(1,0)關(guān)于直線y=x的對(duì)稱(chēng)點(diǎn)為(0,1),即圓心C為(0,1),又半徑為1,∴圓C的標(biāo)準(zhǔn)方程為x2+(y-1)2=1. 【答案】 x2+(y-1)2=1 5.(xx四川高考)設(shè)m∈R,過(guò)定點(diǎn)A的動(dòng)直線x+my=0和過(guò)定點(diǎn)B的動(dòng)直線mx-y-m+3=0交于點(diǎn)P(x,y),則|PA|+|PB|的取值范圍是________. 【解析】 根據(jù)直線方程分別確定定點(diǎn)A,B的坐標(biāo),根據(jù)兩條動(dòng)直線的方程可知兩直線垂直,從而可確定點(diǎn)P滿(mǎn)足的條件,最后根據(jù)基本不等式求|PA|+|PB|的取值范圍. 由動(dòng)直線x+my=0知定點(diǎn)A的坐標(biāo)為(0,0),由動(dòng)直線mx-y-m+3=0知定點(diǎn)B的坐標(biāo)為(1,3),且兩直線互相垂直,故點(diǎn)P在以AB為直徑的圓上運(yùn)動(dòng).故當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B重合時(shí),|PA|+|PB|取得最小值,(|PA|+|PB|)min=|AB|= .當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B不重合時(shí),在Rt△PAB中,有|PA|2+|PB|2=|AB|2=10.因?yàn)閨PA|2+|PB|2≥2 |PA| |PB|,所以2(|PA|2+|PB|2)≥(|PA|+|PB|)2,當(dāng)且僅當(dāng)|PA|=|PB|時(shí)取等號(hào),所以|PA|+|PB|≤ = =2 ,所以 ≤|PA|+|PB|≤2 ,所以|PA|+|PB|的取值范圍是[ ,2 ]. 【答案】 [ ,2 ] 從近三年高考來(lái)看,該部分高考命題的熱點(diǎn)考向?yàn)椋? 1.直線方程與兩條直線的位置關(guān)系 ①該考向??純?nèi)容有直線的傾斜角、斜率、方程,兩直線垂直、平行關(guān)系及交點(diǎn)的求解;試題設(shè)計(jì)常與圓錐曲線交匯命題,先求直線方程,再進(jìn)一步解答其他方面的內(nèi)容. ②從題型上看,單獨(dú)考查時(shí)以選擇題為主,突出考查學(xué)生的基礎(chǔ)知識(shí)、基本技能,屬中、低檔題. 2.圓的方程 ①該考向主要考查求圓的方程及圓的性質(zhì)的應(yīng)用,待定系數(shù)法在此有時(shí)會(huì)有所體現(xiàn). ②主要以選擇題、填空題的形式出現(xiàn),很少出現(xiàn)在解答題中,屬中、低檔題. 3.直線與圓、圓與圓的位置關(guān)系 ①該考向主要考查直線與圓的相交、相切、相離關(guān)系的判斷與應(yīng)用,弦長(zhǎng)、面積的求法等及圓與圓的位置關(guān)系,并常與圓的幾何性質(zhì)交匯. ②從題型上主要以選擇題、填空題的形式呈現(xiàn),屬于中、低檔題. 【例1】 (1)直線2xcos α-y-3=0(α∈[,])的傾斜角的變化范圍是( ) A.[,] B.[,] C.[,] D.[,] (2)(xx福建高考)已知直線l過(guò)圓x2+(y-3)2=4的圓心,且與直線x+y+1=0垂直,則l的方程是( ) A.x+y-2=0 B.x-y+2=0 C.x+y-3=0 D.x-y+3=0 (3)(xx遼寧高考)已知點(diǎn)O(0,0),A(0,b),B(a,a3).若△OAB為直角三角形,則必有( ) A.b=a3 B.b=a3+ C.(b-a3)(b-a3-)=0 D.|b-a3|+|b-a3-|=0 【解析】 (1)∵2xcos α-y-3=0,∴y=2cos αx-3. ∵≤α≤,∴≤cos α≤, ∴1≤2cos α≤.∴k∈[1,]. ∴θ∈[,].故選B. (2)所求直線過(guò)圓心(0,3),且斜率k為1,∴直線l的方程為y-3=1(x-0),整理得x-y+3=0,故選D. (3)根據(jù)直角三角形的直角的位置求解. 若以O(shè)為直角頂點(diǎn),則B在x軸上,則a必為0,此時(shí)O,B重合,不符合題意; 若∠A=,則b=a3≠0. 若∠B=,根據(jù)斜率關(guān)系可知a2=-1,所以a(a3-b)=-1,即b-a3-=0. 以上兩種情況皆有可能,故只有C滿(mǎn)足條件. 【答案】 (1)B (2)D (3)C 【規(guī)律方法】 1.區(qū)別直線的斜率與傾斜角: 每條直線都有傾斜角,但不是每條直線都有斜率;斜率和傾斜角都反映了直線相對(duì)于x軸正方向的傾斜程度. 2.求直線方程的方法: (1)直接法:直接選用恰當(dāng)?shù)闹本€方程的形式,寫(xiě)出方程. (2)待定系數(shù)法:即先由直線滿(mǎn)足的一個(gè)條件設(shè)出直線方程,使方程中含有一待定系數(shù),再由題目中另一條件求出待定系數(shù). 3.兩條直線平行與垂直的判定: (1)若兩條不重合的直線l1,l2的斜率k1,k2存在,則l1∥l2?k1=k2,l1⊥l2?k1k2=-1. (2)兩條不重合的直線a1x+b1y+c1=0和a2x+b2y+c2=0平行的充要條件為a1b2-a2b1=0且a1c2≠a2c1或b1c2≠b2c1. (3)垂直的充要條件為a1a2+b1b2=0.判定兩直線平行與垂直的關(guān)系時(shí),如果給出的直線方程中存在字母系數(shù),不僅要考慮斜率存在的情況,還要考慮斜率不存在的情況. [創(chuàng)新預(yù)測(cè)] 1.(1)(xx浙江名校聯(lián)考)已知直線l1:x+(a-2)y-2=0,l2:(a-2)x+ay-1=0,則“a=-1”是“l(fā)1⊥l2”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 (2)(xx廣州檢測(cè))一條光線沿直線2x-y+2=0入射到直線x+y-5=0后反射,則反射光線所在的直線方程為_(kāi)_______. 【解析】 (1)一方面,若a=-1,則l1:x-3y-2=0,l2:-3x-y-1=0,顯然兩條直線垂直;另一方面,若l1⊥l2,則(a-2)+a(a-2)=0,∴a=-1或a=2,因此,“a=-1”是“l(fā)1⊥l2”的充分不必要條件,故選A. (2)取直線2x-y+2=0上一點(diǎn)A(0,2),設(shè)點(diǎn)A(0,2)關(guān)于直線x+y-5=0對(duì)稱(chēng)的點(diǎn)為B(a,b),則 解得∴B(3,5). 由解得∴直線2x-y+2=0與直線x+y-5=0的交點(diǎn)為P(1,4),∴反射光線在經(jīng)過(guò)點(diǎn)B(3,5)和點(diǎn)P(1,4)的直線上,其直線方程為y-4=(x-1),整理得x-2y+7=0. 【答案】 x-2y+7=0 【例2】 (1)(xx山東高考)圓心在直線x-2y=0上的圓C與y軸的正半軸相切,圓C截x軸所得弦的長(zhǎng)為2,則圓C的標(biāo)準(zhǔn)方程為_(kāi)_______. (2)(xx全國(guó)新課標(biāo)Ⅱ高考)在平面直角坐標(biāo)系xOy中,已知圓P在x軸上截得線段長(zhǎng)為2,在y軸上截得線段長(zhǎng)為2. ①求圓心P的軌跡方程; ②若P點(diǎn)到直線y=x的距離為,求圓P的方程. 【解】 (1)∵圓心在直線x-2y=0上, ∴可設(shè)圓心為C(2b,b). ∴r=2b(b>0). 設(shè)圓C與x軸交于A,B兩點(diǎn),作CD⊥x軸垂足為D, ∴CD=b,CB=2b. 在Rt△CBD中,|BD|==b, ∴|AB|=2|BD|=2. ∴2b=2. ∴b=1. ∴C(2,1),r=2. ∴圓的標(biāo)準(zhǔn)方程為:(x-2)2+(y-1)2=4 (2)①設(shè)P(x,y),圓P的半徑為r. 由題設(shè)y2+2=r2,x2+3=r2.從而y2+2=x2+3. 故P點(diǎn)的軌跡方程為y2-x2=1. ②設(shè)P(x0,y0),由已知得 =. 又P在雙曲線y2-x2=1上,從而得 由得此時(shí),圓P的半徑r=. 由得此時(shí),圓P的半徑r=. 故圓P的方程為x2+(y-1)2=3或x2+(y+1)2=3. 【答案】 (1)(x-2)2+(y-1)2=4 (2)見(jiàn)解析 【規(guī)律方法】 圓的方程的求法: (1)幾何法,通過(guò)研究圓的性質(zhì)、直線和圓、圓與圓的位置關(guān)系,從而求得圓的基本量和方程; (2)代數(shù)法,用待定系數(shù)法先設(shè)出圓的方程,再由條件求得各系數(shù).從而求得圓的方程一般采用待定系數(shù)法. 注意:根據(jù)條件,設(shè)圓的方程時(shí)要盡量減少參數(shù),這樣可減少運(yùn)算量. [創(chuàng)新預(yù)測(cè)] 2.(1)(xx北京西域區(qū)期末)若坐標(biāo)原點(diǎn)在圓(x-m)2+(y+m)2=4的內(nèi)部,則實(shí)數(shù)m的取值范圍是( ) A.-1- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué)二輪復(fù)習(xí) 直線與圓 2019 年高 數(shù)學(xué) 二輪 復(fù)習(xí) 直線
鏈接地址:http://ioszen.com/p-3207496.html