畢 業(yè) 論 文 (設(shè)計)題目名稱: 自動裝卸 AGV 設(shè)計 所 在 學(xué) 院 :專業(yè)(班級):學(xué) 生 姓 名 : 指 導(dǎo) 教 師 : 評 閱 人: 院 長:自動裝卸 AGV 設(shè)計總計:畢業(yè)論文: 30 頁表 格: 2 表插 圖: 17 幅指導(dǎo)教師:評 閱 人:完成時間:I摘 要本次畢業(yè)設(shè)計為解決當(dāng)下國內(nèi)外 AGV 小車價格高居不下及其并不適合基礎(chǔ)工業(yè)不完善的我國的問題,并且目前大部分 AGV 采用電磁或軌道引導(dǎo),路線固定,局限性較大,不適用于柔性化制造系統(tǒng)。為解決上述問題,在目前 AGV 的基礎(chǔ)上,創(chuàng)新性的使用機械手聯(lián)動的的裝卸方式,避免了為了滿足各工況需求而覆蓋的各種移載機構(gòu),驅(qū)動模式和導(dǎo)引方式,降低了成本。同時又不同于 AGC 需要完善的基礎(chǔ)設(shè)施配合,三只靈巧機械手足夠完成裝卸工作,極大地發(fā)揮了 AGV 本身的自主性和工作容積。搭配四個麥克納姆輪極大地縮小了轉(zhuǎn)向半徑可在更狹小空間內(nèi)作業(yè)。同時仿照無人駕駛汽車運行原理采用激光測距雷達(dá)配接近傳感器能夠滿足各種復(fù)雜路徑的使用要求,自動化程度更高。同時定位精度主要由雷達(dá)的精度決定,便于用戶靈活調(diào)整型號以適應(yīng)場所并控制成本(定位精度為±10mm到±5mm )。關(guān)鍵詞:AGV;工業(yè)機器人;物流搬運;無人駕駛技術(shù)IIABSTRACTThe graduation design in order to solve the present high prices for AGV car at home and abroad and is not suitable for basic industry is not perfect in our country, and at present most of the AGV by electromagnetic or track guide, fixed route, limitations, is not suitable for the flexible manufacturing system.To solve the above problems, on the basis of the AGV, the use of innovative way of loading and unloading manipulator linkage, avoided in order to meet the demand of working condition of the institution, and cover a variety of transfer of driving mode and direct way, reduce the cost. At the same time, it is different from the basic facilities that AGC needs to perfect, and the three dexterous manipulators are enough to complete the loading and unloading work, which greatly exerts the autonomy and working capacity of AGV itself. With four McNams, the steering radius is greatly reduced to work in smaller Spaces. At the same time, the operation principle of the self-driving car adopts laser ranging radar and proximity sensors to meet the requirements of various complex paths, and the automation level is higher. At the same time, the positioning accuracy is mainly determined by the accuracy of the radar, so that the user can adjust the model flexibly to fit the site and control the cost (the positioning accuracy is plus or minus 10mm to plus or minus 5mm).Key Words:AGV ;Industrial robots; Logistics transport; Unmanned technologyIII目 錄1.緒論 11.1 AGV 概述 .11.2 背景技術(shù) 11.3 國內(nèi)外機械能越障小車的發(fā)展概況 .12.機械結(jié)構(gòu)設(shè)計 22.1 自動裝卸 AGV 技術(shù)參數(shù) .22.2 直流伺服電動機的選擇 .23.控制系統(tǒng)的設(shè)計 93.1 控制系統(tǒng)總體方案 .93.2 電機驅(qū)動芯片的選擇 .94.運動學(xué)分析 .124.1 單個輪子動力學(xué)模型 .124.2 運動學(xué)方程 135. 系統(tǒng)的拓展 155.1 軟件結(jié)構(gòu) 155.2 基于行為的軟件特征 155.3 行為選擇 155.4 AGV 環(huán)境中的行為與選擇機制 .166. 定位與導(dǎo)航 176.1 定位 .176.2 概率定位 176.3 AGV 的可信度 .186.4 坐標(biāo)系 .216.5 導(dǎo)航功能 217. 機械手設(shè)計 257.1 機械手腕部設(shè)計 257.2 自由度計算 258. AGV 路徑仿真 .289. 結(jié)論 30參 考 文 獻(xiàn) 31致 謝 32附錄 1:外文譯文 33附錄 2:外文原文 36自 動 裝 卸 AGV 設(shè) 計11.緒論1.1 AGV 概述本畢業(yè)設(shè)計課題來源于第十屆全國 3D 大賽,命題與高校工程訓(xùn)練教學(xué)內(nèi)容相銜接,體現(xiàn)綜合性工程能力。命題內(nèi)容體現(xiàn)“創(chuàng)新設(shè)計能力、制造工藝能力、實際操作能力和工程管理能力”四個方面的要求。現(xiàn)代工業(yè)的發(fā)展不僅要求產(chǎn)品高質(zhì)量、高性能,而且為實現(xiàn)可持續(xù)發(fā)展,產(chǎn)品的生產(chǎn)工藝必須高效率、低成本。根據(jù)美國物流協(xié)會定義,AGV 是無人搬運車(Automated Guided Vehicle)的英文縮寫。是指裝備有電磁或光學(xué)等自動導(dǎo)引裝置,能夠沿規(guī)定的導(dǎo)引路徑行駛,具有安全保護(hù)以及各種移載功能的運輸車。目前 AVG 應(yīng)用領(lǐng)域主要集中在倉儲業(yè),制造業(yè),港口碼頭及特種行業(yè)。其中工業(yè)領(lǐng)域里的制造業(yè)需要很多內(nèi)部運輸,以及很多不同的物料處理。AGV 的自動導(dǎo)引運輸車系統(tǒng)可以滿足這類需求。比如:工具,托盤,成品,半成品,原材料,卷式產(chǎn)品,物料供應(yīng)等的搬運。AGV 在制造業(yè)的其他應(yīng)用包括支持高層儲架的托盤檢索,生產(chǎn)區(qū)的物品和零部件的運輸,以及生產(chǎn)區(qū)和存儲區(qū)之間的物品運輸。制造業(yè)每天物流的典型特點是高吞吐量,空間和靈活性很重要。AGV 的自動物料處理系統(tǒng)可以很好地滿足此類需求,比如把物品從輸送帶,托盤堆垛機以及天車上轉(zhuǎn)移到倉庫,生產(chǎn)車間,裝配區(qū)和發(fā)貨區(qū)等。1.2 背景技術(shù)目前國內(nèi) AGV 主要采用的是以日本為代表的簡易型 AGV 技術(shù),稱為AGC(Automated Guided Cart)該技術(shù)追求的是簡單實用,讓用戶在最短時間內(nèi)收回投資成本,但 AGC 只用來搬運,并不強調(diào)自動裝卸功能,雖然價格低廉但不適合基礎(chǔ)工業(yè)并不十分完善的我國。同時當(dāng)下大部分 AGV 采用電磁或軌道引導(dǎo),路線固定,局限性較大,不適用于柔性化制造系統(tǒng)。1.3 國內(nèi)外機械能越障小車的發(fā)展概況根據(jù)美國物流協(xié)會定義,AGV 是無人搬運車(Automated Guided Vehicle)的英文縮寫。是指裝備有電磁或光學(xué)等自動導(dǎo)引裝置,能夠沿規(guī)定的導(dǎo)引路徑行駛,具有安全保護(hù)以及各種移載功能的運輸車。目前 AVG 應(yīng)用領(lǐng)域主要集中在倉儲業(yè),制造業(yè),港口碼頭及特種行業(yè)。其中工業(yè)領(lǐng)域里的制造業(yè)需要很多內(nèi)部運輸,以及很多不同的物料處理。AGV 的自動導(dǎo)引運輸車系統(tǒng)可以滿足這類需求。比如:工具,托盤,成品,半成品,原材料,卷式產(chǎn)品,自 動 裝 卸 AGV 設(shè) 計2物料供應(yīng)等的搬運。AGV 在制造業(yè)的其他應(yīng)用包括支持高層儲架的托盤檢索,生產(chǎn)區(qū)的自 動 裝 卸 AGV 設(shè) 計1物品和零部件的運輸,以及生產(chǎn)區(qū)和存儲區(qū)之間的物品運輸。制造業(yè)每天物流的典型特點是高吞吐量,空間和靈活性很重要。AGV 的自動物料處理系統(tǒng)可以很好地滿足此類需求,比如把物品從輸送帶,托盤堆垛機以及天車上轉(zhuǎn)移到倉庫,生產(chǎn)車間,裝配區(qū)和發(fā)貨區(qū)等。1.4 設(shè)計內(nèi)容本設(shè)計在目前 AGV 的基礎(chǔ)上,創(chuàng)新性的使用機械手聯(lián)動的的裝卸方式,避免了為了滿足各工況需求而覆蓋的各種移載機構(gòu),驅(qū)動模式和導(dǎo)引方式,降低了成本。同時又不同于 AGC 需要完善的基礎(chǔ)設(shè)施配合,三只靈巧機械手足夠完成裝卸工作,極大地發(fā)揮了 AGV 本身的自主性和工作容積。搭配四個麥克納姆輪極大地縮小了轉(zhuǎn)向半徑可在更狹小空間內(nèi)作業(yè)。同時仿照無人駕駛汽車運行原理采用激光測距雷達(dá)配接近傳感器能夠滿足各種復(fù)雜路徑的使用要求,自動化程度更高。同時定位精度主要由雷達(dá)的精度決定,便于用戶靈活調(diào)整型號以適應(yīng)場所并控制成本(定位精度為±10mm 到±5mm)。1.5 基本方案設(shè)計過程中需要完成:各機構(gòu)機械方面選擇、加工工藝方案的選擇和優(yōu)化和加工成本及材料分析選擇等。在此其中,機械加工成本,原材料的選擇等都會對最終性能產(chǎn)生影響,因此,需要多方面思量這些問題,合理選擇,設(shè)計出最優(yōu)的方案。本設(shè)計為一種新型的 AGV 如圖 1.1 所示,采用四個 Mecanum 輪驅(qū)動的結(jié)構(gòu)形式,通過直流伺服電動機驅(qū)動車輪行駛,當(dāng)兩輪轉(zhuǎn)速不同或轉(zhuǎn)向相反時就可以實現(xiàn)轉(zhuǎn)向。四輪結(jié)構(gòu)加四套減速器相對來講有較大的負(fù)載能力和較好的平穩(wěn)性,與兩輪驅(qū)動和安裝差速器及轉(zhuǎn)向機構(gòu)的設(shè)計相比雖然成本較高但傳動誤差小,轉(zhuǎn)向靈活,故采用此方案。圖 1.1 AGV 三維預(yù)覽圖自 動 裝 卸 AGV 設(shè) 計2自 動 裝 卸 AGV 設(shè) 計32.機械結(jié)構(gòu)設(shè)計2.1 自動裝卸 AGV 技術(shù)參數(shù)自動搬運小車的長度 1.3m自動搬運小車的寬度 1.3m自動搬運小車的高度 1m自動搬運小車的重量 160kg持續(xù)運行時間 8~10h充電方式 自動/手動定位精度 ±10mm剎車距離 ≤0.1m負(fù)載 ≤500kg小車轉(zhuǎn)彎半徑 ≥0.6m(可原地差動旋轉(zhuǎn))小車最大速度 ≤1.2m/s行走定位點數(shù) 可行走任意多個設(shè)備位置抗干擾能力 對路面打滑具有較強抗干擾能力蓄電池 免維護(hù)充電電池,連續(xù)放電次數(shù)>300 次安全感應(yīng)范圍 ≤3mm 可調(diào),緊急制動距離<20mm人機交互 觸屏人機交互,方便設(shè)置參數(shù),設(shè)置站點 及報警位置設(shè)計壽命 >10 年2.2 直流伺服電動機的選擇直流伺服電機的選擇關(guān)系著控制系統(tǒng)的靜、動態(tài)特性和運動精度,所以在選擇直流伺服電機的時候,主要應(yīng)該參考以下幾點要求:①調(diào)速范圍廣闊而且平滑。②機械特性較硬而且動態(tài)/靜態(tài)調(diào)節(jié)特性良好。③響應(yīng)時間較短,可適用于要求快速啟停的控制場合。④體積小,重量輕,控制特性成線性。伺服電動機主要根據(jù)下面三個因素選擇運行速度:AGV 行走的速度為 1.2m/s,車輪的轉(zhuǎn)速為自 動 裝 卸 AGV 設(shè) 計4min/624.8014.3.6601 rdvn??????(2.1 )選擇減速比為 i=5 的減速器in.2r/286.5in?電(2.2 )小車自重為 PN1.90?(2.3 )為方便抓取將小車重心放在整體靠前的位置,負(fù)載的重心后置保證了運行中具有更高的穩(wěn)定性和可操控性,整體重心仍落在車體幾何中心。小車的載荷為 G Nmg4908.50???(2.4 )自動搬運小車的受力分析如圖 2.1 所示。 圖 2.1 車輪受力簡圖取坐標(biāo)系 OXYZ 如圖所示,列出平衡方程由于由于前后車輪相對于 y 軸呈對稱分布,有 dcbaF?,自 動 裝 卸 AGV 設(shè) 計5??0ZF02???PFCa(2.5 )XM06.234.1.- ???cF(2.6 )解得 NFNFdcba 13.5,867.??Mecanum 輪的受力情況很復(fù)雜,見圖 2.2。本小車采用的 45°Mecanum 輪在旋轉(zhuǎn)時產(chǎn)生的力通過與地面接觸的滾輪作用于地面,使力可以分解為一個垂直于滾輪軸的矢量和一個與軸平行的矢量。垂直于滾輪的力會隨著小滾輪轉(zhuǎn)動產(chǎn)生的動能釋放,而平行于滾柱軸的力將產(chǎn)生一個施加到輪子上的力并且作用到小車上,使小車向前移動。圖 2.2 Mecanum 原理,向量分解 由于 Mecanum 輪不會單獨出現(xiàn),對于這種四輪組合的形式,需要將每一個輪子在45°時產(chǎn)生的力結(jié)合起來以分析小車的運動,左右兩個 45°的力矢量可分解為向前力矢量和側(cè)向力矢量,兩個向前力矢量相疊加而兩個側(cè)向矢量(一個向左一個向右)則相互抵消,此處僅分析直線運動,因為前輪所受載荷較大,故僅分析前輪受力狀態(tài),前輪受力狀態(tài)如圖 2.3 所示(更詳細(xì)的 Mecanum 輪受力分析見 4.1 單個輪子動力學(xué)模型)。自 動 裝 卸 AGV 設(shè) 計6圖 2.3 前輪受力滾動摩阻力偶矩 應(yīng)該處于零與最大值之間,即fMmax0f?(2.7 )mNFN ????13.0867.10.max?(2.8 )上式中 δ 為滾動摩阻系數(shù),查閱書中常用材料的滑動摩擦系數(shù)與滾動摩阻系數(shù)一表得到 δ=2~10,取 δ=6mm。牽引力 F 為 NdM3.2504.12max??(2.9 )(1)電動機軸上所承受的的轉(zhuǎn)矩 為LT??mNidTNL??????746.5108.952.0867.13.2.??(2.10 )傳遞效率 η 取 0.7,摩擦系數(shù) μ 取 0.15自 動 裝 卸 AGV 設(shè) 計7(2)電動機軸上的負(fù)荷慣性 為LJ???243120296. 064.13.076.54mKgJiJL???????????(2.11 )上式中 是車輪的質(zhì)量慣性矩, 是傳動裝置部件轉(zhuǎn)動慣量1J432,J(3)電機的選定根據(jù)以上計算,在負(fù)載慣性已知情況下可以根據(jù)要求的運動特性分析電機的輸出轉(zhuǎn)矩,選擇直流伺服電動機。電機型號及參數(shù):MOVING YZ-57BLS120 120W 伺服電機轉(zhuǎn)子慣量 230cmgJM??匹配條件為 max96.1L即 0.25<0.729<1 125.0ax<< MLJ(2.12 )296.53.230cmgL ????(2.13 )故電機滿足要求。(4)快移時的加速性能伺服電機的最大輸出轉(zhuǎn)矩是 AGV 工作時,電動機運行到最高轉(zhuǎn)速 時,輸出到maxn車輪的最大扭轉(zhuǎn)力矩 maxTNnJTa ?????? ?23.1076.042396.51602 7max??(2.14 )加速時間 sTMa4(2.15 )其中機械時間常數(shù) m19?2.3 驅(qū)動輪系的設(shè)計驅(qū)動輪系的設(shè)計應(yīng)滿足如下要求:①尺寸符合 AGV 的要求。自 動 裝 卸 AGV 設(shè) 計8②結(jié)構(gòu)簡單、合理,拆裝方便。③強度及剛度符合要求。④扭矩的有效傳遞。為了與傳動部件相聯(lián)結(jié),輸出軸一端被做成扁平頭形狀,參考現(xiàn)有參數(shù)選取直徑為 φ8 的電機軸與直徑為 φ12 的聯(lián)接部分,故其結(jié)構(gòu)設(shè)計圖 2.4 所示。圖 2.4 聯(lián)軸器機構(gòu)圖銷釘直徑 d 可按剪切強度公式計算,即????ZDKTdm8?(2.16) 選用 45 鋼作為銷定材料,翻閱書后表格得優(yōu)質(zhì)碳素結(jié)構(gòu)鋼(GB 699-88)45 2/39.0%,5,17,35,637m20 mMJMPaaxssb ????? ???,調(diào) 質(zhì)硬度 36~42HRC銷釘?shù)脑S用切應(yīng)力為????b.4587????(2.17 )過載限制系數(shù) K 查表取 K=1.6,T=0.587N·md64.075.124.36.???(2.18 )根據(jù)上述強度計算,取銷釘直徑 d=5mm。2.4 軸的設(shè)計由于前輪所受載荷大于后輪,故對前輪進(jìn)行校核,前輪軸結(jié)構(gòu)如圖 2.5。自 動 裝 卸 AGV 設(shè) 計9圖 2.5 前輪軸結(jié)構(gòu)(1)求前輪軸上的功率 ,轉(zhuǎn)速 ,功率1P1n1T取傳動裝置的效率 ,則7.0??KWP84.201??(2.19 )min/6.81rn(2.20 )mNPT ?????? 789.264.8015.905.96161(2.21 )(2)初步確定軸的最小直徑選用 45 鋼作為軸的材料,經(jīng)過調(diào)質(zhì)處理,取得 ,于是有150AmnPAd639.724.815330min ???(2.22)法蘭所處位置的輪軸直徑最小,由于法蘭與軸采用雙頂絲聯(lián)結(jié),故軸的直徑取10mm自 動 裝 卸 AGV 設(shè) 計10該 Mecanum 輪的輪轂使用鋁合金材料,大輪軸使用 45 鋼,剛度和強度都比較好,小輪軸使用普通碳鋼,因為整個輪子的最大應(yīng)力處恰好出現(xiàn)在小輪軸上,因此需要更高的強度。小輪使用橡膠材料,摩擦系數(shù)比較大,能給 AGV 提供較好的抓地力和加速性能。(3)確定軸上倒角尺寸取軸端倒角為 1×45°。3.控制系統(tǒng)的設(shè)計自 動 裝 卸 AGV 設(shè) 計113.1 控制系統(tǒng)總體方案本系統(tǒng)的核心的控制運算部分采用的是 AT89S51 單片機。數(shù)字編碼器在電機運轉(zhuǎn)時發(fā)出的脈沖信號,經(jīng)過自行設(shè)計和制作的脈沖鑒向電路,可以得到電機的運轉(zhuǎn)方向 [8];來自鑒向電路的正反方向的脈沖信號進(jìn)入到電機專用驅(qū)動模塊,單個模塊可同時驅(qū)動多個電機,調(diào)節(jié)轉(zhuǎn)速時,相應(yīng)的 I/O 口輸出不同的 PWM(Pulse Width Modulation,脈沖寬度調(diào)制)波形,通過 H 橋開關(guān)放大器,作為執(zhí)行機構(gòu)的速度或者力矩給定,再通過總線與電機控制器連接就可以控制電機的運轉(zhuǎn),使整個 AGV 自動引導(dǎo)小車能夠完成所設(shè)計的控制任務(wù) [8]。整個控制系統(tǒng)的組成框圖如圖 3.1 所示。圖 3.1 系統(tǒng)硬件框圖3.2 電機驅(qū)動芯片的選擇伺服驅(qū)動器所提供的最大電流不能小于電機的峰值電流,調(diào)整時的輸入電流不得大于伺服電機的消磁電流。電機和負(fù)載的慣量之和小于驅(qū)動伺服電機所允許的最大慣量。采用 PWM 功率放大器作為驅(qū)動元件驅(qū)動直流伺服電機。PWM 的選擇可以參考以下原則:開關(guān)頻率應(yīng)能使電機軸產(chǎn)生微小振動,能夠克服靜摩擦,改善運行特性。即:mTf<(3.1),K 為力矩常數(shù), 為 PWM 電源電壓, L 為電感,T 為電機靜摩擦LTkUfCM4/?CU力矩。自 動 裝 卸 AGV 設(shè) 計12微小振動的最大角位移應(yīng)小于設(shè)定的位置誤差。即:3192?LJkUfCT>(3.2)其中 J 為轉(zhuǎn)動慣量, Δ 為設(shè)定的位置誤差。盡量減少電機產(chǎn)生的高頻功率損耗。即應(yīng)使得 [8]:L2RA?Tf(3.3)其中 為內(nèi)阻。AR選用 UC3637 和 H 橋放大電路來驅(qū)動伺服電機,由于一般伺服電機電感較小,切換頻率過低會導(dǎo)致交流分量很大并損害功率晶體管功能,因此選擇 30KHz 的切換頻率。①單電源或雙電源工作,±2.5~±20V②限流保護(hù)③欠電壓封鎖④溫度補償,2.5V 閾值的關(guān)機控制UC3637 的三角波產(chǎn)生電路如圖 3.2 所示。圖 3.2 恒幅三角波產(chǎn)生電路三角波參數(shù)的計算:自 動 裝 卸 AGV 設(shè) 計13取 PWM 定時電路充電電流為 0.5MPa,則有??05.6HTSTVR??(3.4 )??THTfC4.6(3.5 )其中, 為 PWM 頻率。由允許電機最大電流 決定 [8]。Tf AI21.3max?max2.0IRS?(3.6 )對于圖 3.10 所示的控制系統(tǒng),要求: AIKHzfPWMKRVVS 8;301024 maxINCmax ?????? 限 流頻 率;;;取 a=1,計算得??????????VRSCIN 52.162410amax3(3.7 )????KRIN 8.35.62434(3.8 )VVINSR 1.08.434?(3.9 ) TH13.????????? KVTHS 897.613.4205.16223(3.10 ) FVfCKRKTHTST 9331 107.18.405.405.2684. ???????自 動 裝 卸 AGV 設(shè) 計14其中 是三角波峰值的閾值電壓。 THV4.運動學(xué)分析4.1 單個輪子動力學(xué)模型在電機的選擇部分,車輪被設(shè)定為剛體和未變形的圓盤,并且車輪與地面的相互作用被認(rèn)為是點接觸。實際 Mecanum 輪上的小輪是由橡膠制成,所以相互作用是面接觸。假設(shè)自動搬運小車的重心不高,因此當(dāng) AGV 加速時,由高重心引起的對地壓力的改變被忽略?;谲囕v動力學(xué)理論,當(dāng) AGV 加速運動時,驅(qū)動輪與地面的接觸變形產(chǎn)生的切向力是 AGV 運動的牽引驅(qū)動力。只要車輪和地面間的接觸區(qū)域,即車輪接地印記上承受切向力,就會有不同程度的滑移,所以嚴(yán)格地說,理想的純滾動假設(shè)與實際情況不符 [9]。在加速過程中最大限度地減小車輪滑移是 AGV 運動控制的目標(biāo),其前提是對單個車輪的運動進(jìn)行分析。當(dāng)車輪在地面上滾動時,所有的相互作用力以及由車輪和接觸區(qū)的地面產(chǎn)生的相應(yīng)變形都伴隨著能量損失,這是滾動阻力的根本原因。為了提高 AGV 的加速性能 [9]所以小輪采用橡膠輪。這種彈性變形引起的彈性遲滯損失形成了阻礙車輪滾動的一種阻力偶,當(dāng)車輪僅受徑向載荷而不滾動時,在地面上的正常反作用力在前后方對稱分布,其合力 與法向載荷 P 重合于法線 方向,如圖 4.1(a)所示。車輪滾動時,變形zFn??前后對應(yīng)點的法線 是相同的,但由于彈性遲滯的現(xiàn)象,地面法向反作用力在前部n??的加載壓縮過程就會大于后部的卸載恢復(fù)過程。在這種情況下,地面法向反作用力前后的分布并不對稱,使其合力 相對于法線 向前移了一個距離 e[9],如圖zF?4.1( b)。自 動 裝 卸 AGV 設(shè) 計15圖 4.1 輪子受力情況輪子靜止時受力情況;(b)輪子滾動時受力情況如果將法向反作用力 向后平移至通過輪子中心,與其垂線重合,那么車輪在地zF面上滾動時的應(yīng)激狀態(tài)如圖 4.2 所示,一個額外的力偶矩 出現(xiàn)阻礙車輪的滾動,eFTzf?被稱為滾動阻力偶矩 [9]。由圖 4.2 可知,為了使車輪在地面上以恒定的速度滾動,有必要增加一個驅(qū)動力矩或推力到軸上,從而克服上述滾動阻力矩。相關(guān)的數(shù)學(xué)關(guān)系如下:eFTZf??(4.1 ) rZfP(4.2 )reFZP???(4.3 )rR?(4.4 )RfPF??(4.5 )上式中, 是滾動阻力系數(shù),從上面的公式可以看出,滾動阻力系數(shù)是指單位車?重所需之推力。因此,車輪的徑向垂直載荷和滾動阻力系數(shù)的乘積就是車輪的滾動阻自 動 裝 卸 AGV 設(shè) 計16力,如式(4.5)所示。在車輪上驅(qū)動 AGV 移動的真正力量是地面對車輪的切向反應(yīng)力。圖 4.2 滾動阻力偶的形成4.2 運動學(xué)方程(1)基于 Mecanum 的自動搬運小車的移動方向(線速度 沿小車中軸方向,xv垂直于中軸方向)和旋轉(zhuǎn)速度 的矩陣方程為yv???????????????????????????? ??BRLFRLyx edeedrv ???? ++++ 21-21e- 4-442(4.1 )其中 等為每個輪的轉(zhuǎn)速(r/s),r 為輪子半徑,d 為左右輪之間距離,e 為前?FL?后輪之間距離, 為小車的向前速度, 為小車的側(cè)向速度,ω 為小車的旋轉(zhuǎn)速度。xvyv(2)基于 Mecanum 的自動搬運小車給定的的期望線速度和角速度與每個輪子速度的矩陣方程為自 動 裝 卸 AGV 設(shè) 計17?????????????????????? ????yxBRLFRL vededr21-2-12+ ++ +(4.2 )其中 為期望線速度和角速度。?,yxv5. 系統(tǒng)的拓展上面的控制方法需要構(gòu)建一個世界模型,然后計劃行動,最后在一個真實的環(huán)境中執(zhí)行這些計劃。然而,構(gòu)建世界模型和計劃行動需要花費大量的時間,這將對 AGV的性能產(chǎn)生重大影響。此外,規(guī)劃模型與實際環(huán)境之間的偏差會導(dǎo)致 AGV 運動無法達(dá)到預(yù)期的效果。5.1 軟件結(jié)構(gòu)目前 AGV 使用的軟件模型即標(biāo)準(zhǔn)模型(層次模型),是一種從上而下執(zhí)行的可預(yù)測軟件結(jié)構(gòu)。傳感器獲得數(shù)據(jù)預(yù)處理的兩層,然后交付給高的 “智能”層做出行動的決定,實際駕駛(如導(dǎo)航和底層驅(qū)動函數(shù)) 交由低級層執(zhí)行,最低層為小車的接口,將駕駛指令發(fā)送給 AGV 執(zhí)行器。自 動 裝 卸 AGV 設(shè) 計18為了解決經(jīng)典模型演算時間長,動作完成度不夠等問題,使用一種基于行為的模型,不編寫整段的代碼,而是將每一個 AGV 的功能封裝成一個個小而獨立的模塊,即一個“行為”。所有的行為都是并行執(zhí)行,所以不需要設(shè)置優(yōu)先級。此種設(shè)計易于擴展,如增加一個新的傳感器或向 AGV 程序里增加一個新的行為特征。5.2 基于行為的軟件特征(1)感應(yīng)與動作緊密耦合基于行為的 AGV 的動作是對刺激的反應(yīng)而不是依賴于有意識的規(guī)劃。避免考慮計劃,用小的計算負(fù)載(模塊)來替換它,以實現(xiàn)從輸入到動作的映射,這有利于快速響應(yīng)。(2)避開知識的符號表示不需要構(gòu)造一個內(nèi)部模型用來處理環(huán)境信息與規(guī)劃任務(wù)。AGV 從觀測中直接產(chǎn)生未來的行為,而非試圖產(chǎn)生一個可內(nèi)部操作的世界抽象并以此作為規(guī)劃未來行動的基礎(chǔ)。(3)分解成具有因果意義的單元(4)并發(fā)關(guān)聯(lián)行的時變激活等級調(diào)整5.3 行為選擇由于在軟件系統(tǒng)中有一定數(shù)量的行為作為并行進(jìn)程運行,每個行為都可以作為讀取所有的傳感器(讀動作),但只有一個行為可獲得 AGV 執(zhí)行器或者行駛機構(gòu)的控制權(quán)(寫動作)。因此為了達(dá)到預(yù)期目的需要一個全局控制器在恰當(dāng)時機來協(xié)助行為選擇。如果采用固定優(yōu)先級行為,這樣一種僵硬的系統(tǒng)使其能力受到了極大地限制,并難以應(yīng)付日益復(fù)雜的系統(tǒng)。期望的目標(biāo)是能設(shè)計并制作一個采用自適應(yīng)控制器的基于隱藏在系統(tǒng)內(nèi)部的“智能”,在任何特定的時間根據(jù)感知和狀態(tài)輸入決定激活哪一個行為。反應(yīng)和規(guī)劃(自適應(yīng)控制器)組件的結(jié)合形成了一個混合系統(tǒng),其結(jié)合了思考和反應(yīng)結(jié)構(gòu)的要素,在傳感器和電機輸出間有多個混合方案來協(xié)調(diào)完成任務(wù)。系統(tǒng)只需要從有利于完成任務(wù)的標(biāo)準(zhǔn)定義進(jìn)行學(xué)習(xí)以完成任務(wù)。這將設(shè)計系統(tǒng)時的主要工作,從描述系統(tǒng)本身轉(zhuǎn)變成定義一個正常工作的輸出系統(tǒng)上來。介于定義任務(wù)告竣的評價標(biāo)準(zhǔn)要比完整的系統(tǒng)描述簡單,這將極大地減少系統(tǒng)設(shè)計的工作量。5.4 AGV 環(huán)境中的行為與選擇機制神經(jīng)網(wǎng)絡(luò)用于接收所有來自傳感器(包括預(yù)處理過的高層傳感器數(shù)據(jù))、一個時鐘以及每一個行為狀態(tài)的輸出,并生成輸出以選擇當(dāng)前活動的行為,然后生成一個動作。這種網(wǎng)絡(luò)結(jié)構(gòu)是通過遺傳算法的進(jìn)化而來的,它被用來優(yōu)化描述任務(wù)評估標(biāo)準(zhǔn)的適應(yīng)度函數(shù),如圖 5.1 所示。使用神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃可以把環(huán)境障礙等作為神經(jīng)網(wǎng)絡(luò)的自 動 裝 卸 AGV 設(shè) 計19輸入層信息,通過神經(jīng)網(wǎng)絡(luò)并行處理,神經(jīng)網(wǎng)絡(luò)的輸出層輸出所需的方向和速度,引導(dǎo)機器人避免障礙行駛,直到到達(dá)目的地。該方法具有處理效率高、學(xué)習(xí)能力強 [10]、收斂性好等特點。圖 5.1 AGV 環(huán)境中的行為及選擇機制6. 定位與導(dǎo)航我們需要獲知當(dāng)前位置,并且具有制定到達(dá)目的地的規(guī)劃能力,準(zhǔn)確的定位是建立精確全局地圖的先決條件,也是 AGV 實現(xiàn)正確路徑規(guī)劃的保證?;谝曈X的自我定位過程是對視覺傳感器捕捉到的環(huán)境特征進(jìn)行提取和分析的過程,并根據(jù)具體的標(biāo)準(zhǔn)建立觀察與環(huán)境數(shù)據(jù)庫的對應(yīng)關(guān)系,從而確定 AGV 自身的姿態(tài) [10],如圖 6.1 所示。圖 6.1 基于視覺的 AGV 自定位自 動 裝 卸 AGV 設(shè) 計206.1 定位由于行駛環(huán)境多變,所以本設(shè)計并沒有使用全局傳感器,而且它也限制了 AGV 的自主能力;作為替換選擇使用本體傳感系統(tǒng)。本設(shè)計將激光雷達(dá)安裝在 AGV 上,這樣就得到了使用本體傳感器的 AGV。6.2 概率定位所有的 AGV 移動和傳感器測量都會受到一定程度的噪聲干擾。概率定位的目的是在以前所有數(shù)據(jù)和其他相關(guān)分布函數(shù)的基礎(chǔ)上,能夠最好地估計 AGV 當(dāng)前的狀態(tài)。由于其固有的不確定性,最終的估計將是一個概率分布。假定 AGV 從 x=0,y=0 處開始沿直線(如沿 x 軸)行駛,執(zhí)行移動距離 d 的指令,d 從板載(絕對)定位系統(tǒng)(GPS 接收器)接受傳感器數(shù)據(jù) s。數(shù)值 d 和 (用s????當(dāng)前的位置測量值減去在執(zhí)行行駛命令前的位置測量值),就可能會偏離真實位置。x????必須通過大量的實驗來測量機器人從任意的起始位置的行駛精度,然后由一個PMF(概率密度函數(shù))表示出來,例如:??????cdxpbdxpadxp ????1;;1(6.1 )需要注意的是,此處只能加上或減去一個單位(如 cm)來變更 AGV 的真實位置。在可以表示為一個 PMF 之前,必須以類似的方式通過測量得到 AGV 位置傳感器的精度。??????csxpbsxpasxp ????????1;;1(6.2 )假設(shè) AGV 執(zhí)行 的行駛命令并且完成后,本體傳感器報告其位置為d?。實際位置 x 的概率如下,其中 n 作為歸一化因子:??0,??ydxs???nan xpdpxsp???? ????????1 0,|1|(6.3 )??????nbn xpdxpdspx???? ???????1 0,||(6.4 )自 動 裝 卸 AGV 設(shè) 計21??????ncn xpdxpdxspdx???? ?????????1 0,|31|(6.5 )由于 PMF 對于所有偏差值大于 1(加或減)的概率為 0,因此 AGV 執(zhí)行行駛距離為 的命令后,位置只有可能是位置 、位置 、位置 。因此,這三個概率d? ??d?1??d加起來應(yīng)當(dāng)?shù)扔?1,我們可以根據(jù)這個事實來確定歸一化因子 n:cban???????(6.6 )6.3 AGV 的可信度根據(jù) 5.1.1 的計算可以求出三個位置的概率,它反映了 AGV 的可信度????cbadxpcbadxp????????????11因此,概率最大的位置就是 AGV 最可能出現(xiàn)的位置,但它仍會記住這個階段所有的概率。當(dāng) AGV 執(zhí)行第二個行駛命令,假設(shè)這一次使 ,但執(zhí)行指令后其傳感器仍然報d??告 。AGV 將根據(jù)條件概率重新計算其位置的可信度,用 x 表示 AGV 行駛后的真ds??實位置,用 表示行駛前的位置。x???????cban cbacbaadxpdxdxpsnp???? ?????? ???????????? ????????? ??????2 00]11,|1,|[1(6.7 )自 動 裝 卸 AGV 設(shè) 計22???????cban cbacbadxpdxdxpsndxp???? ?????? ???????????? ????????? ??????2 00]11,|,|[|(6.8 )??????cban cbacbadxpdxdxpsndxp???? ?????? ???????????? ???????? ??????2 00]11,|1,|[1(6.9 )由于 AGV 的真實位置與傳感器的讀數(shù)偏差只能為 1,因此只能計算出1,???dx的情形來。之后,將概率歸一化??????????????22222222 222111cbadxpcbadxpcn cbanbanba???????????? ?????????????????(6.10 )自 動 裝 卸 AGV 設(shè) 計23這些最終的概率是合理的,因為 AGV 的傳感器比其推算結(jié)果更加準(zhǔn)確。另外,通常 AGV 在 的位置的可能性很小,而這正是它在可信度上的表現(xiàn)。??1???dxp這個方法最大的問題是所工作的空間必須是離散的,即 AGV 的位置只能離散的表示??梢酝ㄟ^將離散值設(shè)置為行駛命令和傳感器的最小分辨值。在本設(shè)計中,我們期望的行駛和傳感器精度不能超過 10mm,可以通過讓所有的距離以 10mm 遞增。但同時,也會產(chǎn)生大量的測量值和大量的使用個別概率的離散距離值。為了解決這個問題,可以使用一種稱為粒子濾波器的技術(shù),它允許使用非離散的配置空間。它可以將 AGV 的位置的可信度表示為為 N 個粒子的集合 M,每個粒子包含有一個 AGV 的配置 x 與權(quán)重 。??1,0??行駛后,AGV 借助第一次采樣得到的 PDF(probability density function,概率密度函數(shù)) 更新第 j 個粒子 的構(gòu)型,典型的 是高斯分布。在此之后,??jjdp?,| jx??jjxdp?,|AGV 為第 j 個粒子賦予一個新的權(quán)重 。然后,權(quán)重歸一化使得權(quán)重總和為?jjxs|?1。最后,重新采樣并保留最有可能的粒子。標(biāo)準(zhǔn)的重新采樣算法如下:M={}R=rand(0,1/N)c=w[0]i=0for j=0 to N-1 dou=R+j/Nwhile uc doi=i+1c=c+w[i]end whileM=M+{x{i},1/N}/*add particle to set*/end for6.4 坐標(biāo)系與一般 AGV 不同,本設(shè)計具有相當(dāng)?shù)淖杂赡芰?,并沒有采用固定路線引導(dǎo),故首先,在未知環(huán)境中建立一個地圖或者在已知環(huán)境中規(guī)劃路徑是很重要的,而這需要在全局或者世界坐標(biāo)下進(jìn)行定義。將 AGV 的本體坐標(biāo)系轉(zhuǎn)化成全局坐標(biāo)是一個二維坐標(biāo)轉(zhuǎn)換,為了匹配兩個坐標(biāo)系,需要一個平移和一個旋轉(zhuǎn)變換。設(shè)本 AGV 具有全局位置坐標(biāo) 和全局方向 。其本體坐標(biāo)是 ,然后按照??yxr,???yxo?如下的公式可以計算其全局坐標(biāo):????yxyxyx oRtrTanso??,,, ?(6.11 )