購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,【有不明白之處,可咨詢QQ:1304139763】
畢 業(yè) 設(shè) 計 說 明 書 題目 分線盒注塑模具設(shè)計 二級學(xué)院 直屬學(xué)部 專業(yè) 班級 學(xué)生姓名 學(xué)號 指導(dǎo)教師姓名 職稱 評閱教師姓名 職稱 摘 要 分析了分線盒的結(jié)構(gòu)特征 使用 Pro E軟件進行分模設(shè)計 利用注塑模設(shè)計專家 EMX 外掛進行其模架的設(shè)計 為了減少試模次數(shù) 降低設(shè)計成本 選用 Moldflow軟 件對塑件進行模具設(shè)計的優(yōu)化分析 并對分線盒注塑模進行了流動模擬分析 在進行塑件 3D設(shè)計后 利用 CAD進行 2D的排位 制圖和出圖 主要注射模的定 模機構(gòu) 動模機構(gòu) 澆注系統(tǒng) 導(dǎo)向裝置 頂出機構(gòu) 抽芯機構(gòu) 冷卻和加熱裝置 排氣系統(tǒng)等的設(shè)計 塑件流動模擬分析內(nèi)容包括 充填分析 保壓分析 殘余應(yīng)力分析 主要包括 充填時間 平均速度 氣穴 熔接痕 體積收縮率 塑件變形等 由此獲得滿意合理 的澆口數(shù)量和位置 分析了降低塑件成本的方法 針對批量不大的不同規(guī)格結(jié)構(gòu)形式的分線盒 設(shè)計 成一模多用的模具 只需更換模具中的幾個關(guān)鍵零件就可以生產(chǎn)多規(guī)格形式的塑件 減少模具數(shù)量 成本費大幅度減少 關(guān)鍵詞 分線盒 CAD CAE 流動分析 一模多用 滑動型芯 分線盒注塑模具設(shè)計 2 目錄 1 緒論 1 2 塑件工藝分析 1 2 1 塑件分析 1 2 2 塑件的原材料分析及工藝參數(shù) 3 2 2 1 塑件的原材料分析 3 2 3 HPVC 的注射工藝參數(shù) 3 2 4 HPVC 的主要性能指標(biāo) 4 3 注塑機的選型 4 3 1 所需注射量的計算 4 3 1 1 塑件質(zhì)量 體積計算 4 3 2 注射機型號的選擇 5 3 3 型腔數(shù)量及注射機有關(guān)工藝參數(shù)的校核 5 3 1 1 型腔數(shù)量的校核 5 3 1 2 注射機工藝參數(shù)的校核 6 3 1 3 安裝尺寸校核 6 3 1 4 開模行程和推出機構(gòu)的校核 7 3 1 5 模具尺寸與拉桿內(nèi)間距校核 7 4 分型面的選擇 7 4 1 確定型腔數(shù)量和排列方式 8 5 澆注系統(tǒng)設(shè)計 9 5 1 主流道的設(shè)計 9 5 2 主流道襯套的形式 9 5 3 澆口的結(jié)構(gòu)形式 10 5 4 澆注系統(tǒng)的平衡 11 6 成型零件的結(jié)構(gòu)設(shè)計和尺寸設(shè)計 11 6 1 成型零部件的結(jié)構(gòu)形式 11 6 1 1 凸凹模的結(jié)構(gòu)設(shè)計 11 6 1 2 成型零部件的工作尺寸的計算 11 6 1 3 型腔零件強度 剛度的校核 13 7 脫模機構(gòu)的設(shè)計 14 7 1 脫模推出機構(gòu)的設(shè)計原則 14 7 2 推出機構(gòu)的設(shè)計 14 7 2 1 脫模力的計算 15 7 2 2 確定頂出方式及頂桿位置 15 7 2 3 推桿強度計算 15 8 側(cè)抽芯機構(gòu)的設(shè)計 16 8 1 滑動堵頭與滑動型芯設(shè)計 16 8 2 斜導(dǎo)柱長度的計算 17 9 溫度調(diào)節(jié)系統(tǒng) 18 9 1 冷卻系統(tǒng)的設(shè)計原則 18 3 9 2 冷卻介質(zhì)的選用 18 9 2 1 冷卻系統(tǒng)的粗略計算 18 10 模架的確定 19 11 塑件的 Mold flow 分析 19 11 1 有限元法介紹 19 11 2 分線盒模型前處理 20 11 3 分線盒注塑模流動分析及改進 21 致 謝 26 參考文獻 26 1 1 緒論 塑件的生產(chǎn)成本包括原料費 水電費 人工費 模具費等 其中原料費 水電 費 人工等與生產(chǎn)塑件的數(shù)量成正比關(guān)系 模具費分攤到每個塑件的費用與生產(chǎn)塑件 的數(shù)量密切相關(guān) 即模具生產(chǎn)塑件的數(shù)量越多 模具費分攤到每個塑件的費用就越少 注射模設(shè)計制造周期長 精度要求高 價格昂貴 因此注射模適合大批量生產(chǎn) 但如 圖 1 所示分線盒塑件 需求量不大或在一段時間內(nèi)需求量不大 而規(guī)格 型號較多 如每一個規(guī)格 型號塑件都做 1 副模具 模具數(shù)量多 生產(chǎn)周期長 制造費用高 成 本高 缺乏市場競爭力 現(xiàn)設(shè)計 1 副一模多用的注射模 只需更換模具中的幾個關(guān)鍵 零件就可生產(chǎn)多種規(guī)格塑件 成本大幅度減少 提高了市場競爭力 企業(yè)經(jīng)濟效益也 顯著提高 2 塑件工藝分析 2 1 塑件分析 分線盒主要用于通訊 網(wǎng)絡(luò)等的分線管接線 從使用要求看 分線盒具有高電絕 緣性和難燃 阻燃特性 防塵防潮 因此分線盒塑料選用硬聚氯乙烯 HPVC HPVC 成 型性能好 使用性能穩(wěn)定 貨源充足 價格合理 收縮率 0 6 1 5 溢料值 0 06mm 可滿足使用和成型要求 圖 a 為四通分線盒 有 4 個通路口 mm 0 2 通路口與分線管相配 64 0 2mm 尺寸與分線盒蓋相配 這 2 組尺寸精度要求較高 其余尺寸精度只作一般要求 塑件上 4 個通路 mm 與分線盒的主分型面垂直 為 0 2 外側(cè)凸起和側(cè)孔 為便于開模取件必須設(shè)計側(cè)抽芯結(jié)構(gòu) 而且為節(jié)約制造成本 側(cè)抽 芯的結(jié)構(gòu)必須實現(xiàn)一模多用 只需要更換其中的部分零件就可以生產(chǎn) 5 種不同規(guī)格的 制品 要生產(chǎn)的制件如圖 2 1 所示 分線盒注塑模具設(shè)計 2 圖 2 1 分線盒二維圖 圖 2 2 分線盒三維圖 3 2 2 塑件的原材料分析及工藝參數(shù) 2 2 1 塑件的原材料分析 塑件的原材料采用硬聚氯乙烯 HPVC 屬熱塑性塑料 從實用性能上看 有較好 的抗拉 抗彎 抗壓抗沖擊性能 有較好的電器絕緣性能 但熱穩(wěn)定性較差 長時間 加熱會導(dǎo)致分解 放出氯化氫氣體 從成型性能上看 易放出氯化氫 必須加入穩(wěn)定 劑和潤滑劑 并嚴格控制溫度及熔料的滯留時間 模具澆注系統(tǒng)應(yīng)粗短 進料口截面 易大 模具應(yīng)有冷卻裝置 a 尺寸精度分析 根據(jù)任務(wù)書的要求 該零件工作尺寸的制造精度為 IT9 級 塑件最大壁厚為 3mm 最小為 2mm 壁差為 1mm 較均勻 有利于零件成型 從課本 塑料成型加工與模具 表 4 2 得 壁厚為 2mm b 表面質(zhì)量分析 該零件的表面除要求沒有缺陷 毛刺 內(nèi)部不得有導(dǎo)電雜質(zhì)外 沒有特別的表面 質(zhì)量要求 故比較容易實現(xiàn) 2 3 HPVC 的注射工藝參數(shù) a 注射機 螺桿式 b 螺桿轉(zhuǎn)速 r min 15 25 c 料筒溫度 后段 150 160 中段 165 170 前段 170 180 d 噴嘴溫度 180 200 噴嘴形式 通用型 e 模具溫度 30 60 f 注射溫度 190 215 g 注射壓力 MPA 80 130 h 保壓壓力 MPA 40 60 i 成型時間 S 注射 2 5 保壓 15 40 成型周期 40 90 冷卻 15 40 2 4 HPVC 的主要性能指標(biāo) 分線盒注塑模具設(shè)計 4 表 2 1 HPVC 的主要性能指標(biāo) 密度 g cm 3 1 35 1 45 屈服強度 Map 35 50 質(zhì)量體積 cm g 0 69 0 74 抗拉強度 Map 35 50 吸水率 24h 0 07 0 4 拉彎彈性模量 Gap 2 4 4 2 玻璃化溫度 87 抗彎強度 Map 90 熔點 160 212 彎曲彈性模量 Map 0 05 0 09 計算收縮率 抗彎強度 Map 比熱容 j kg k 1260 抗剪強度 Map 3 注塑機的選型 注射機為塑料注射成型所用的主要裝備 因此設(shè)計注射模是應(yīng)該詳細了解注射機 的技術(shù)規(guī)范 才能設(shè)計出符合要求的模具 注射機規(guī)范的確定是根據(jù)素件的大小及型 腔的數(shù)目和排列方式 再確定模具結(jié)構(gòu)形式及初步估算外形尺寸的前提下 設(shè)計人員 應(yīng)對模具所需的注射量 鎖模力 注射壓力 拉桿間距 最大和最小模具厚度 推出 形式 推出位置 推出形程 開模距離等進行計算 根據(jù)這些參數(shù)選擇一臺和模具相 配的注射機 3 1 所需注射量的計算 3 1 1 塑件質(zhì)量 體積計算 根據(jù)任務(wù)書提供的塑件圖樣 建立塑件模型并對此模型分析得 塑件體積 3127 5cmV 塑件質(zhì)量 40g 1 澆注系統(tǒng)凝料體積的初步計算 可按塑件體積的 0 6 倍計算 由于該模具采用一模一腔 所以澆注系統(tǒng) 凝料體積為 3210 6 5cmV 2 該模具一次注射所需塑料 體積 3 1 3012 7 4 質(zhì)量 3 2 0156 8MPg 3 2 注射機型號的選擇 5 近年來我國引進注射機型號很多 國內(nèi)注射機生產(chǎn)廠的新機型也日益增多 掌控 使用設(shè)備的技術(shù)參數(shù)是注射模型設(shè)計和生產(chǎn)所必需的技術(shù)準備 在設(shè)計模具時 最好 查閱注射機生產(chǎn)廠家提供的 注射機使用說明書 上標(biāo)明的技術(shù)參數(shù) 根據(jù)以上初步計算初步選定型號為 XS ZY 250 型臥式注射機 表 3 1 注射機的主要技術(shù)參數(shù) 螺桿直徑 mm 50 拉桿內(nèi)間距 mm 448x370 螺桿長徑比 最大模具厚度 mm 350 理論容量 cm 3 250 最小模具厚度 mm 250 注射質(zhì)量 g 推出行程 mm 注射速率 g s 頂出力 ken 塑化能力 g s 頂出桿根數(shù) 額定注射壓力 Mpa 1300 定位孔直徑 mm 125 螺桿轉(zhuǎn)速 r min 頂出中心孔直徑 mm 40 鎖模力 ken 180 噴嘴球半徑 SR mm 18 開模行程 mm 350 噴嘴孔半徑 mm 4 3 3 型腔數(shù)量及注射機有關(guān)工藝參數(shù)的校核 3 1 1 型腔數(shù)量的校核 1 由注射機額定注射量確定型腔數(shù)量 3 1 0 84 17gjnV 注射機額定注射量gV 澆注系統(tǒng)工程凝料量j 單個塑料的容積或質(zhì)量n 2 按注射機額定鎖模力進行校核 3 2 01 8jFAPn 式中 注射機的額定鎖模力 N0F 分線盒注塑模具設(shè)計 6 單個塑件在模具分型面上的投影面積 A 2m 澆注系統(tǒng)在模具分型面上的投影面積 j 塑料熔體對型腔的成型壓力 MPa 其大小一般是注射壓力的 80 P 3 1 2 注射機工藝參數(shù)的校核 1 注射量校核 注射量以容積表示 最大注射容積為 3 3 3max0 75129 75Vcm 式中 模具型腔和流道的最大容積 指定型號和規(guī)格的注射機注射量容積 3c 注射系數(shù) 取 0 75 倘若實際注射量過小 注射機的塑化能力得不到發(fā)揮塑料在料桶中停留時間過長 所以最小注射量容積 故每次注射的實際注射量容積 3min0 251 Vcm V 應(yīng)滿足 而 V 44 符合要求 minax 3c 2 最大注射壓力校核 注射機的額定注射壓力即為該機器的最高壓力 應(yīng)該大于注射成型時max 120MP 所需調(diào)用的注射壓力 P 即 3 4 max0K 式中 安全系數(shù) 常取 1 25 1 400 實際生產(chǎn)中 該塑件成型時所需注射壓力 為 70Mpa 100Mpa 代值計算 符合要0P 求 3 1 3 安裝尺寸校核 1 主流道小端直徑 D 大于注射機噴嘴 d 通常為 D d 0 5 1 mm 對于該模具 d 4mm 取 D 4 5mm 符合要求 2 主流道入口的凹面半徑 SR0 應(yīng)大于注射機噴嘴球半徑 SR 通常為 SR0 SR 1 2mm 對于該模具 SR 12mm 取 SR0 13mm 符合要求 3 定位圈尺寸 注射機定位孔尺寸為 H7 定位圈尺寸取 f6 兩者之間呈較松動的間隙配合 7 符合要求 4 最大與最小模具厚度 模具厚度應(yīng)滿足 Hmin H Hmax 式中 Hmin 200mm Hmax 300mm 而該套模具厚度 H 90 32 50 63 235mm 符合要求 3 1 4 開模行程和推出機構(gòu)的校核 開模行程的校核 H H1 H2 3 5 H H1 H2 5 10 mm 式中 H 注射機動模板的開模行程 mm H1 塑件推出行程 H2 25 32 60 5 10 112 117 mm 代值計算 符合要求 該注射機推出行程滿足要求 3 1 5 模具尺寸與拉桿內(nèi)間距校核 該套模具模架的外形尺寸為 300mmx285mm 而注射機拉桿間距為 448mm x 370mm 因 370mm 300mm 符合要求 注 對于上面的 2 3 4 5 的校核內(nèi)容與后面的模具結(jié)構(gòu)設(shè)計交叉進行的 但為了整體形式與內(nèi)容的統(tǒng)一 所以將該部分內(nèi)容放于此 4 分型面的選擇 在塑件設(shè)計階段 就應(yīng)考慮成型時分型面的形狀位置 否則無法用模具成型 在 模具設(shè)計階段 應(yīng)首先確定分型面的位置 然后才選擇模具的結(jié)構(gòu) 分型面設(shè)計是否 合理 對塑件質(zhì)量 工藝操作難易程度和模具的設(shè)計制造都有很大影響 因此 分型 面的選擇是注射設(shè)計中的一個關(guān)鍵因素 有利于保障塑件的外觀質(zhì)量 1 分型面應(yīng)選則在塑件的最大截面處 2 盡可能使塑件留在動模一側(cè) 3 有利于保障塑件的尺寸精度 4 盡可能滿足塑件的使用要求 5 盡量減少塑件在和模方向上的投影面積 分線盒注塑模具設(shè)計 8 6 長型芯應(yīng)置于開模方向 7 有利于排氣 8 有利于簡化模具結(jié)構(gòu) 該塑件在進行塑件設(shè)計時已經(jīng)充分考慮了上述原則 同時從所提供的塑件圖樣上 可以看出 64 的圓桶四周有四個外經(jīng) 26 的 圓環(huán) 根據(jù)其特點和表面質(zhì)量要求 采 用平面分型面 這樣有利于塑件脫模 也易于型芯和型腔的加工 其位置和形狀如圖 4 1 所示 圖 4 1 分型面結(jié)構(gòu)及形式 4 1 確定型腔數(shù)量和排列方式 一般來說 大中型塑件和精度要求的小型塑件優(yōu)先采用一模一腔的結(jié)構(gòu)形式 但對于精度要求不高的小型塑件 沒有配合精度要求 形狀具有一定的特殊性 又 是小批量生產(chǎn)時 可以采用一模一腔的結(jié)構(gòu) 故由此初步擬訂一模一腔 如圖 4 2 所示 9 圖 4 2 型腔圖 5 澆注系統(tǒng)設(shè)計 澆注系統(tǒng)是引導(dǎo)塑料熔體從注射機噴嘴到模具型腔的進料通道 具有傳質(zhì) 傳壓 和傳熱的功能 對塑件質(zhì)量影響很大 它分為普通流道澆注系統(tǒng)和熱流道澆注系統(tǒng) 該模具采用普通流道澆注系統(tǒng) 采用點澆口 雙分型面 5 1 主流道的設(shè)計 主流道通常位于模具中心塑料熔體的入口處 它將注射機噴嘴處的熔體導(dǎo)入分流道 或型腔中 主流道的形狀為圓錐形 以便于熔體的流動和開模時主流道凝料的順利拔 出 主流道尺寸 1 主流道小端直徑 D 注射機噴嘴直徑 0 5 1 4 05 1 取 D 4 5mm 2 主流道球面半徑 SR0 注射機噴嘴球半徑 1 2 12 1 2 取 SR0 13mm 3 球面配合高度 h 3mm 5mm 取 h 3mm 4 主流道長度盡量小于 60mm 由標(biāo)注模架結(jié)合該模具結(jié)構(gòu) 取 L 40mm 5 2 主流道襯套的形式 主流道小端入口處與注射機噴嘴反復(fù)接觸 屬易損件 對材料要求較嚴 因而模具 主流道部分常設(shè)計成可拆卸更換的主流道襯套形式即澆口套 以便有效的選用優(yōu)質(zhì)剛 分線盒注塑模具設(shè)計 10 材單獨進行加工和熱處理 常采用碳素工具鋼 如 T8A T10A 等 熱處理硬度為 50HRC 55HRC 如圖 5 1 所示 圖 5 1 主流道襯套 5 3 澆口的結(jié)構(gòu)形式 澆口的設(shè)計原則 1 澆口尺寸及位置選擇應(yīng)避免熔體破裂而產(chǎn)生噴射和蠕動 2 澆口位置應(yīng)有利于流動 排氣和補料 3 澆口位置應(yīng)使流程最短 料流變向量少 并防止型芯變形 4 澆口位置及數(shù)量應(yīng)有利于減少熔接痕和增加熔接強度 圖 5 2 澆口的位置與形式 5 4 澆注系統(tǒng)的平衡 11 對于該模具 從塑件圖上可以刊出 該塑件是對稱結(jié)構(gòu) 采用點澆口 澆注系統(tǒng) 顯然是平衡的 流動比的校核 5 1 ni 1iLt 式中 流動距離比 流動路徑各段長度 mmi 流動路徑各段的型腔厚度 mmit n 流動路徑的總段數(shù) 1485 93 因為影響流動比的因素主要是塑料的流動比 根據(jù)注塑壓力確定 HPVC 的流動性中 等 其允許流動比 130 170 所以 符合要求 6 成型零件的結(jié)構(gòu)設(shè)計和尺寸設(shè)計 6 1 成型零部件的結(jié)構(gòu)形式 6 1 1 凸凹模的結(jié)構(gòu)設(shè)計 中小型凹模宜采用整體式凹模 本設(shè)計采用整體式凹模 這是因為凹模板厚度為 27mm 比較薄 模板尺寸也較小 采用整體式并不會浪費材料 整體式凹模的優(yōu)點是 強度大 塑件上不會產(chǎn)生拼??p痕跡 凸模的裝配形式有模體與底板一體式 底板裝 配式 螺釘配合底板式 本模具屬于小型模具 為了減少模具零件的加工量和便于加 工 采用過渡配合 H7 m6 將型芯壓入模具 6 1 2 成型零部件的工作尺寸的計算 成型零部件中與塑件接觸并決定塑件幾何形狀的各處尺寸 稱為工作尺寸 它包 括型腔深度與型芯高度尺寸 型腔和型芯徑向尺寸 成型零件中心距 根據(jù)與塑件熔 體或塑件之間產(chǎn)生摩擦磨損之后尺寸的變化趨勢 可將工作尺寸分為三類 1 孔類尺 寸 A 類 2 軸類尺寸 C 類 3 中心距類尺寸 C 類 任何制品都有一定的尺寸要求 制品成型后的實際尺寸與基本尺寸之間的誤差叫制品的尺寸偏差 引起制品產(chǎn)生尺寸 偏差的原因很多 據(jù)目前的生產(chǎn)經(jīng)驗來說 主要的原因是來自塑件的收縮率 成型零 部件的制造偏差及其在使用過程中的磨損等三方面 生產(chǎn)中一般根據(jù)制品尺寸允許的公差 來確定成型零部件的制造偏差 及其磨 z 分線盒注塑模具設(shè)計 12 損量 它們關(guān)系如下 c 5 2 13z 6z 利用平均收縮率來計算 平均收縮率 Scp 是塑件的最大收縮率 Scpmax 與最小收 縮率 Scpmin 的和的一半 即 Scp Scpmax Scpmin 2 0 6 1 5 2 0 105 5 3 型腔工作部分尺寸 型腔徑向尺寸 Lm 1 s Ls x 5 4 型腔深度尺寸 Hm 1 s Ls x 5 5 型芯徑向尺寸 lm 1 s ls x 5 6 型芯深度尺寸 hm 1 s ls x 5 7 型芯高度尺寸 hm 1 s hs x 5 8 中心距尺寸 5 9 2 1 2MzszCC 式中 Ls 形徑向基本尺寸的最大尺寸 mm Ls 塑件內(nèi)形徑向基本尺寸的最小尺寸 mm Hm 塑件外形高度基本尺寸的最大尺寸 mm hm 塑件內(nèi)形深度基本尺寸的最小尺寸 mm Cm 塑件中心距基本尺寸的平均尺寸 mm x 修正系數(shù) 取 0 5 0 75 塑件公差 mm 各工作部位尺寸計算結(jié)果如圖 6 1 所示 通常制品中 1mm 和小于 1mm 并帶有大于 0 05 公差的部位以及 2mm 和小于 2mm 并帶有大于 0 1mm 公差的部位不需要進行收縮率 計算 13 圖 6 1 分線盒各工作部分的尺寸 6 1 3 型腔零件強度 剛度的校核 對于該套模具選整體式型腔 型腔的強度 剛度校核如下 型腔側(cè)壁厚度的校核 按強度校核 6 1 符合要7 685 prhSH 求 式中 r 凹模內(nèi)半徑 mm 平均為 32mm p 模具型腔內(nèi)最大的塑料熔體壓力 Mpa 一般為 30Mpa 50Mpa 取 50Mpa 模具強度計算的許用應(yīng)力 預(yù)硬化模具鋼具體值為 300 Mpa 按剛度校核 6 2 1 ErpRr 式中 r 凹模內(nèi)半徑 mm 平均為 32mm P 模具型腔內(nèi)最大的塑料熔體壓力 Mpa 一般為 30Mpa 50Mpa 取 50Mpa 分線盒注塑模具設(shè)計 14 E 模具鋼材的彈性模量 預(yù)硬化塑料模具鋼 E Mpa52 10 模具鋼材的泊松比 取 0 25 模具剛度計算許用變形量 25i mm31 80 帶入計算 R 32 47 55 符合要求 型腔底板厚度的校核 按強度校核 6 3 233 59164 prT 符合要求 式中各符號意義與取值同前 按剛度校核 6 4 122cos tan 0 1 ESLfF AK 符合要求 式中各符號意義與取值同前 7 脫模機構(gòu)的設(shè)計 注射成型每一循環(huán)中 塑件必須準確無誤的從模具的凹模中或型芯中脫出 使塑 件從凸?;虬寄I厦摮龅臋C構(gòu)稱為脫模機構(gòu) 或推出機構(gòu) 7 1 脫模推出機構(gòu)的設(shè)計原則 1 推出機構(gòu)應(yīng)盡量設(shè)置在動模一側(cè) 2 保證塑件不因推出而變形損壞 3 機構(gòu)簡單 動作可靠 4 良好的塑件外觀 5 合模時的準確復(fù)出 7 2 推出機構(gòu)的設(shè)計 1 脫模力的計算應(yīng)考慮的方面 2 由收縮包緊力造成的制品與型芯的摩擦阻力 該值應(yīng)有實驗確定 15 3 由大氣壓力造成的阻力 4 由塑件的黏附力造成的脫模阻力 5 推出機構(gòu)運動摩擦阻力 7 2 1 脫模力的計算 由于制件為圓環(huán)形截面 t d 0 05 則 7 1 122cos tan 0 1 ESLfFAK 式中 無量綱系數(shù) 隨 f 和 而異 值還可從表 8 3 中選取2K2K t d 壁厚與直徑之比 圓環(huán)塑件的壁厚 mm1 S 塑料平均成型收縮率 E 塑料的彈性模量 MPa L 塑件對型芯的包容長度 mm f 塑件與型芯之間的摩擦因數(shù) 模具型芯的脫模斜度 塑料的泊松比 A 盲孔塑件型芯在垂直于脫模方向上的投影面積 通310 minkg 孔制件的 A 等于零 F 10 1KN 7 2 2 確定頂出方式及頂桿位置 根據(jù)制品結(jié)構(gòu)特點 確定在制品的四周邊緣對稱設(shè)置四根普通的圓頂桿 普通圓 形頂桿按標(biāo)準模架 Z41 直徑 6 0 選用 7 2 3 推桿強度計算 圓形推桿直徑 d 7 2 24LFKnE 式中 d 圓形推桿直徑 mm K 推桿長度系數(shù) 0 7 L 推桿長度 mm n 推桿數(shù)量 E 推桿材料的彈性模量 N cm 2 鋼 E 72 10 d 4 取 d 6mm 3 推桿的應(yīng)力校核 分線盒注塑模具設(shè)計 16 7 3 24 Fnd 式中 推桿應(yīng)力 2 Ncm 推桿鋼材的屈服極限強度 N cm 一般中碳鋼 3200 合金結(jié)構(gòu)鋼 2 Ncm 4200 2 c 8952 25 2 Nm 滿足要求 8 側(cè)抽芯機構(gòu)的設(shè)計 8 1 滑動堵頭與滑動型芯設(shè)計 分線盒注射模型腔布置為對稱結(jié)構(gòu) 滑動堵頭 滑動型芯需根據(jù)分線盒的結(jié)構(gòu)進 行更換和組合 滑動堵頭 滑動型芯采用較耐磨的 T10A 淬火處理 以保證足夠的工作 壽命 滑動堵頭 滑動型芯尺寸及形狀精度要求較高 以保證安裝方便 運動順滑 滑動堵頭 滑動型芯結(jié)構(gòu)如圖 8 1 所示 a 滑動堵頭 b 滑動型芯 52 0 32 0 64 0 25 10 25 4 0 25 17 圖 8 1 滑動堵頭與滑動型芯結(jié)構(gòu) 8 2 斜導(dǎo)柱長度的計算 側(cè)型芯滑塊抽芯方向與開合模方向垂直 斜導(dǎo)柱的工作長度 L 與抽芯距及傾斜角 有關(guān) 即 L S sin 斜導(dǎo)柱總長度為 Lz L1 L2 L3 L4 L5 8 1 d2tan 2 h cos dtan 2 s sin 5 10 mm 式中 Lz 斜導(dǎo)柱總長度 d2 斜導(dǎo)柱固定部分大端直徑 h 斜導(dǎo)柱固定板厚度 d 斜導(dǎo)柱工作部分的直徑 s 抽芯距 Lz 90mm 斜導(dǎo)柱直徑計算 側(cè)向抽拔力 Ft AP ucos sin 8 2 式中 A 塑件包緊側(cè)型芯的側(cè)面積 P 塑件收縮率對型芯單位面積的正壓力塑件在模內(nèi)冷卻 P 0 8x10 7 1 2x10 7 Pa u 塑件對鋼的摩擦系數(shù) 斜導(dǎo)柱傾斜角 20 Ft 8 46KN 因為 Hw 15mm Hw 為側(cè)型芯滑塊受到脫模力的作用線與斜導(dǎo)柱中心線交點到斜導(dǎo)柱固定板的距離 由于其直徑計算比較復(fù)雜 有時為了方便 也可以用查表的方法確定斜導(dǎo)柱的直 徑 先按已求得的抽拔力 Ft 和選定的斜導(dǎo)柱傾斜角 查有關(guān)資料得出斜導(dǎo)柱的直徑 d d 16mm 分線盒注塑模具設(shè)計 18 9 溫度調(diào)節(jié)系統(tǒng) 9 1 冷卻系統(tǒng)的設(shè)計原則 1 冷卻系統(tǒng)的布置應(yīng)先于脫模機構(gòu) 2 合理地確定冷卻管道的直徑中心距以及與型腔壁的距離 3 降低進出水的溫度差 普通模具的進出水溫差不應(yīng)超過 5 4 澆口處應(yīng)加強冷卻 5 應(yīng)避免將冷卻水道開設(shè)在塑件熔接痕處 6 冷卻水路應(yīng)便于加工和清理 9 2 冷卻介質(zhì)的選用 HPVC 的成型溫度的模具溫度分別為 190 215 20 60 用溫水對模具進行冷 卻 冷卻介質(zhì)有冷卻水和壓縮空氣 但用冷卻水較多 因為水的熱容量大 傳熱系數(shù) 大 成本低 用水冷卻 即在模具型腔周圍或內(nèi)部開設(shè)冷卻水道 9 2 1 冷卻系統(tǒng)的粗略計算 冷卻水的體積流量 9 1 12qcVWQ 式中 p 冷卻水的密度 為 310 minkg 冷卻水的比熱容 為 4 187kJ kg 1c 冷卻水出口溫度取 25 冷卻水入口溫度取 20 2 冷卻管道直徑 當(dāng)求出冷卻水的體積流量 后 便可根據(jù)冷卻水處于湍流狀態(tài)下的流速 v 與管道Vq 直徑的關(guān)系 見課本 P211 的表 10 1 確定模具冷卻水管道的直徑 d 取 d 8mm 模具應(yīng)開設(shè)的冷卻管道的孔數(shù)為 9 2 AndL 19 10 模架的確定 根據(jù)以上分析 計算以及型腔尺寸位置可確定定模架的結(jié)構(gòu)形式和規(guī)格 選用結(jié) 構(gòu)形式為 A2 型 模架尺寸為 300mmx285mm 的標(biāo)準模架可符合要求 模具上所有的螺釘盡量采用內(nèi)六角螺釘 模具外表面盡量不要有突出部分 模具 外表面應(yīng)光潔 加防銹油 兩模板之間應(yīng)有分模間隙 即在裝配 調(diào)試 維修過程中 可以方便地分開兩模板 11 塑件的 Mold flow 分析 11 1 有限元法介紹 Mold flow 軟件的原理是有限元法 有限元法是力學(xué) 計算方法和計算機技術(shù)相結(jié) 合的產(chǎn)物 由于它在解決工程技術(shù)問題時的靈活性 快速及有效性 發(fā)展非常神速 其解題范圍包括了各個領(lǐng)域 固體力學(xué) 流體場 電磁場 溫度場 聲場 的數(shù)理方 程 其計算機程序幾乎能求解數(shù)理方程中的各類問題 是工程技術(shù)人員必備工具 是 力學(xué) 機械 土木工程 水力等專業(yè)的學(xué)生的必修課 有限元法是求解復(fù)雜工程問題 的一種近似數(shù)值解法 現(xiàn)已廣泛應(yīng)用到力學(xué) 熱學(xué) 電磁學(xué)等各個學(xué)科 主要分析工 作環(huán)境下物體的線性和非線性靜動態(tài)特性等性能 有限元法求解問題的基本過程主要包括 分析對象的離散化 有限元求解 計算 結(jié)果的處理三部分 曾經(jīng)有人做過統(tǒng)計 三個階段所用的時間分別占總時間的 40 50 5 及 50 55 也就是說 當(dāng)利用有限元分析對象時 主要時間是用于對象 的離散及結(jié)果的處理 如果采用人工方法離散對象和處理計算結(jié)果 勢必費力 費時 且極易出錯 尤其當(dāng)分析模型復(fù)雜時 采用人工方法甚至很難進行 這將嚴重影響高 級有限元分析程序的推廣和使用 因此 開展自動離散對象及結(jié)果的計算機可視化顯 示的研究是一項重要而緊迫的任務(wù) 有限元分析的基本步驟和幾個問題 離散化 1 單元怎樣劃分 編排單元碼和節(jié)點碼有什么原則 2 荷載如何移置 單元分析 1 節(jié)點力怎樣用節(jié)點位移表示 2 如何建立以節(jié)點位移表示的節(jié)點平衡 方程式 3 怎樣去求單元的內(nèi)力 應(yīng)力 分線盒注塑模具設(shè)計 20 整體分析 如何以最快的速度 最少的時間 最好的方案解出方程組 以得到最 佳 可行精度 的結(jié)果 11 2 分線盒模型前處理 1 網(wǎng)格的劃分 處理 診斷 導(dǎo)入分線盒模型 并選擇網(wǎng)格類型為表面模型 設(shè)置全局網(wǎng)格邊長為 10mm 接著開 始劃分網(wǎng)格 劃分完成后進行網(wǎng)格數(shù)據(jù)統(tǒng)計 網(wǎng)格數(shù)量 4498 無自由邊 無交叉邊 最小縱橫比 1 15 最大縱橫比 38 55 可以看出 對于之后要進行的翹曲分析 縱橫 比過大 需要調(diào)整 進行網(wǎng)格的縱橫比診斷 調(diào)整網(wǎng)格縱橫比為小于 20 最后進行網(wǎng) 格配向診斷 連通性診斷 自由邊診斷等 均沒有問題 2 分析類型及材料選擇 雙擊 Mold flow 左邊任務(wù)欄的填充 選擇分析類型為 澆口位置 然后選擇材料 為 PVC 牌號為 87322 雙擊任務(wù)欄的 立即分析 21 圖 11 1 最佳澆口位置分析 查看分析結(jié)果 如圖 11 1 所示 藍色顯示的即為最佳澆口位置 修改分析類型為 流動 翹曲 為接下來的分析做準備 11 3 分線盒注塑模流動分析及改進 進行工藝參數(shù)的設(shè)置 雙擊工藝設(shè)置 彈出工藝設(shè)置向?qū)?在冷卻設(shè)置中 設(shè)置模具表面溫度設(shè)為 50 熔體溫度 200 開模時間 5s C C 注射 保壓 冷卻時間為自動 查看頂出條件為頂出溫度 93 頂出凍結(jié)百分比為 100 在流動設(shè)置中 參數(shù)均為自動 在翹曲設(shè)置中 勾選分離翹曲原因復(fù)選框 分線盒注塑模具設(shè)計 22 準備就緒 進行分線盒的 流動 翹曲 分析 得出分析結(jié)果 首先查看分析日志 在 分析日志中查出最大注塑機鎖模力為 18 噸 最大注射壓力為 1 8MPa 充填時間為 2 4s 在充填階段的 1 08s 流動速率為 18 56 立方 cm 每秒時 發(fā)生速度與壓力的切 換 保壓階段從 2 5s 開始 在 12 48s 時 壓力完全釋放 在 32 63s 保壓結(jié)束 生成分析報告 選擇需要的分析內(nèi)容并添加生成報告 報告如下 圖 11 2 變形 不同的收縮 制品在冷卻的過程中 體積會向厚壁的中心部逐漸收縮 而造成表面凹陷 根據(jù) 圖 11 2 的報告分析 需要改進冷卻系統(tǒng) 在四個圓筒周圍增加冷卻水路或降低水溫 23 圖 11 3 充填時間 如圖 11 3 充填時間為 2 5s 旋轉(zhuǎn)塑件選擇塑件上不同的點 發(fā)現(xiàn)充填時間的差值 不超過 0 2s 沒有問題 圖 11 4 氣穴 分線盒注塑模具設(shè)計 24 由圖 11 4 可看出 產(chǎn)生氣穴的位置均在分型面上或者在左右滑塊縫隙 杯口邊緣 位置 易于排氣 所以沒有問題 圖 11 5 熔接痕 熔接痕的產(chǎn)生是因為熔體分流匯合時因料溫下降 或因制品局部太薄 導(dǎo)致匯合 處熔接不良 有痕跡或強度降低 從圖 11 5 中可以看出在 4 個柱體位置有明顯的熔接 痕產(chǎn)生 需要改進工藝參數(shù) 圖 11 6 鎖模力 需求的鎖模力遠小于注塑機的最大鎖模力 所以可行 25 根據(jù)以上報告的參數(shù)分析可制定優(yōu)化方案 加長滑塊處冷卻水道 使不同的冷卻 產(chǎn)生的變形縮小 由于熔接痕不可避免 在調(diào)試模具時 采用增大流速 溫度 壓力 等方法使熔接痕不明顯 分線盒注塑模具設(shè)計 26 致 謝 經(jīng)過兩個多月的努力 我終于完成了畢業(yè)設(shè)計 開始的時候我對一些知識不是很 清楚 所以我閱讀了大量和模具 機械相關(guān)的書籍 花費了很大的時間來系統(tǒng)地學(xué)習(xí) 專業(yè)知識 在這個過程中我充實了自己 并為自己的進步感到喜悅 在這期間有很多人給予了我莫大的幫助 特別是王瑋指導(dǎo)老師 王老師在每個星 期都給我們布置工作 并定期檢查我們的工作情況 在一些不符合要求的地方及時給 我們指正 這對我順利完成設(shè)計幫助很大 同時 在王老師的指導(dǎo)下 我在這次畢業(yè) 設(shè)計過程中鞏固了基礎(chǔ)知識 并深入理解 使自己對所學(xué)知識有了更全面的認識 在 設(shè)計中我不斷改進設(shè)計的機構(gòu) 使它更符合實際 另外還有很多同學(xué)在設(shè)計期間也給 我答疑解惑 我由衷的感謝他們 祝福他們在之后的道路上一切順利 27 參考文獻 1 屈華昌 塑料成型工藝與模具設(shè)計 M 北京 高等教育出版社 2001 2 陳萬林 實用塑料模設(shè)計 M 北京 機械工業(yè)出版社 1999 3 劉彩英 塑料模具設(shè)計手冊 M 北京 機械工業(yè)出版社 2004 4 蔣繼宏 注射模具典型結(jié)構(gòu) 100例 M 北京 中國輕工業(yè)出版社 2006 5 李海梅 注射成型與模具技術(shù) M 北京 化學(xué)工業(yè)出版社 2003 6 張如彥 塑料注射成型與模具 M 北京 中國鐵道出版社 2000 7 張克慧 注射模具設(shè)計 M 陜西 西北工業(yè)大學(xué)出版社 2001 8 馬金駿 塑料模具設(shè)計 M 北京 中國科學(xué)技術(shù)出版社 2002 9 李德群 塑料成型模具設(shè)計 M 武漢 華中理工大學(xué)出版社 2003 10 唐志玉 大型注射模型設(shè)計基礎(chǔ) M 成都 成都科技大學(xué)出版社 2004 11 模具設(shè)計手冊 12 機械設(shè)計手冊 13 王文俊 實用塑料成型工藝 M 北京 國防工業(yè)出版社 1999 14 洪慎章 使用注射成型及模具設(shè)計 M 北京 機械工業(yè)出版社 2006 15 屈華 塑料成型工藝與模具設(shè)計 M 北京 機械工業(yè)出版社 1998 16 付建軍 模具制造工藝 M 北京 機械工業(yè)出版社 2006 17 駱志斌 模具工實用技術(shù)手冊 M 南京 江蘇科技出版社 2003