下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985畢業(yè)設計(論文)任務書課題名稱: 壁面清洗機器人設計 完成期限: 院系名稱 外經(jīng)貿(mào)學院 指 導 教 師 專業(yè)班級 指導教師職稱 學生姓名 院系畢業(yè)設計(論文)工作領導小組組長簽字 下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985摘 要壁面清洗機器人是一個實用性很強的裝置。自從本世紀六十年代以來,爬壁機器人及其相關技術受到人們的廣泛關注,但是,大都是進行了一些試驗性質(zhì)的研究,其相關的理論分析尚不成熟。作為清洗用的爬壁機器人來說,其清洗工作具有簡單、重復的特點,比較適合機器人自主工作,壁面清洗機器人是以清洗高層建筑為目的的壁面移動機器人,它的出現(xiàn)將極大降低高層建筑的清洗成本,改善工人的勞動環(huán)境,提高生產(chǎn)率,也必將極大地推動清洗業(yè)的發(fā)展,帶來相當?shù)纳鐣б婧徒?jīng)濟效益。因此,壁面清洗機器人有著良好的應用前景。本文首先對壁面清洗機器人這個課題的來源、目的及意義進行了闡述,簡單介紹了國內(nèi)外壁面清洗機器人的發(fā)展情況,對壁面清洗機器人的幾種不同的移動方式及吸附方式進行了比較,最后采用了多吸盤的框架式結構,具有結構簡單、操作方便等優(yōu)點。接著對壁面清洗機器人的總體方案進行了設計,設計了行走機構以及轉向機構,通過平動氣缸與腿部氣缸來實現(xiàn)機器人的移動,并且通過對壁面吸附可靠性的分析選擇了吸盤、吸盤支座及快擰接頭等部件,還對其它的氣動元件進行了選型,并且繪制了氣壓系統(tǒng)圖。最后對壁面清洗機器人的控制系統(tǒng)進行了設計,采用了三菱的 FX 系列可編程控制器進行控制,并對可編程控制器的結構特點及工作原理進行了簡單的介紹,然后分析了本設計中壁面清洗機器人的工作過程,對可編程控制器的輸入輸出端口進行了分配,并且編寫了程序的梯形圖。關鍵詞:壁面清洗機器人; 多吸盤的框架式結構; 行走機構; 轉向機構; 壁面吸附可靠性下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985ABSTRACTWall-cleaning robot is a very practical device.Since the sixties of this century,the climbing robot and related technology have greatly provoked word wide attention.But most of them are carried out some pilot studies,the relevant theoretical analysis is not yet mature.Used as a cleaning climbing robot,its cleaning is simple and repetitive,and to compare autonomous robots for work.Wall-cleaning robot is cleaning high-rise building wall for the purpose of mobile robot,its appearance would be extremely reduce the cost of cleaning high-rise buildings,improve the working environment of workers and increase productivity.It will also greatly promote the cleaning industry, bringing considerable social and economic benefits.Therefore,the wall-cleaning robot has a good prospect.This article first wall-cleaning robot from the subject,purpose and meaning is described,briefly introduced the development of domestic and international situation wall-cleaning robot for wall-cleaning robot moving in several different ways and adsorption compared.Finally,using the framework of multi-suction-type structure,with simple and convenient operation.Then on the wall-cleaning robot has been designed overall program designed to walk institutions and steering mechanism,through the translation cylinder and cylinder to achieve the robot’s legs move,and by adsorption on the wall of the reliability of selected sucker,sucker bearing and quick screw joints and other components,also carried out other pneumatic components selection,and rendering the air pressure system diagram.Finally,wall-cleaning robot control system design,using a Mitsubishi FX series programmable controller to control,and the structural features of PLC and working principle of a simple introduction,and then analyzes the design the working process of wall-cleaning robot,the programmable controller input and output ports of the distribution,and has prepared a program of the ladder.Key words:wall-cleaning robot; framework of multi-suction-type structure; walk institutions; steering mechanism; adsorption on the wall of the reliability下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985目 錄1 緒論 ---------------------------------------------------------------------------------------------------------11.1 爬壁機器人 -----------------------------------------11.2 課題的來源、目的與意義 -----------------------------21.3 國內(nèi)外壁面清洗機器人的研究現(xiàn)狀 ---------------------21.4 課題主要內(nèi)容及技術參數(shù) ----------------------------121.5 本章小結 ------------------------------------------132 壁面清洗機器人設計 -------------------------------------------------------------------------142.1 壁面清洗機器人的組成 ------------------------------142.2 行走機構的設計 ------------------------------------152.3 轉向機構的設計 ------------------------------------232.4 吸附裝置的選取 ------------------------------------272.5 壁面清洗機器人的框架以及吸盤安裝板的設計 ----------312.6 控制閥及其它氣動元件的選取 ------------------------342.7 氣路的設計 ----------------------------------------372.8 本章小結 ------------------------------------------383 結論 -------------------------------------------------------------------------------------------------------39參考文獻 ---------------------------------------------40致謝 -----------------------------------------------------------------------------------------------------------41下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 119709851 緒論1.1 爬壁機器人捷克的劇作家卡雷爾·凱培爾最先提出了機器人這個詞語,體現(xiàn)出了人類想要創(chuàng)造出一種能夠模仿人的行動的機器,從而能代替人類去進行不同的工作的一種長久的愿望。國際 ISO 組織把機器人定義為一種自動的、位置可以控制的、具有編程功能的多功能機械手,然而我國的蔣新松院士則建議把機器人定義為一種擬人功能的機械電子裝置。機器人是一種涉及到電子學、機械工程、控制理論、人工智能、仿生學、力學等多種學科相互交叉以及計算機技術、傳感器技術、控制技術、電子技術、驅(qū)動技術等多種技術相互融合的復雜系統(tǒng),也是一種邊緣科學。機器人技術水平的高低在某種意義上能夠體現(xiàn)出一個國家工業(yè)生產(chǎn)能力與科技水平的綜合能力,隨著科學技術的迅速發(fā)展以及人類生產(chǎn)和生活需求的不斷增長,機器人技術被廣泛應用到人類生活中的方方面面,它已經(jīng)成為了高技術領域內(nèi)具有代表性的研究目標,并且為社會帶來了巨大的經(jīng)濟效益。機器人技術的出現(xiàn)以及發(fā)展不但從根本上改變了傳統(tǒng)的工業(yè)生產(chǎn),對人類的社會生活也產(chǎn)生了深遠的影響。壁面爬行機器人是從極限作業(yè)機器人中產(chǎn)生出的一個分支,它主要在壁面或者高空中移動的同時進行作業(yè),由于在現(xiàn)代社會中有許多作業(yè)場合對人的身體有比較大的傷害,甚至不適合人類親身投入其中,這種情況下壁面爬行機器人便可以代替人類去完成這些危險工作,因此爬壁機器人的重要性越來越得到人類的認可。目前國內(nèi)外的許多現(xiàn)場作業(yè)中已經(jīng)投入了相當數(shù)量的壁面爬行機器人,其主要集中在以下幾個行業(yè):(1)核工業(yè):對核廢液儲罐進行視覺檢查、測厚以及焊縫探傷等(2)石化工業(yè):對圓形大罐或者球形罐的內(nèi)外壁面進行檢查或噴砂除銹、噴漆防腐等(3)建筑行業(yè):用于噴涂巨型墻面,安裝瓷磚并且對瓷磚和玻璃壁面進行清洗等(4)消防部門:用于傳遞救援物資,進行救援工作等(5)造船行業(yè):用于噴涂船體或輪船內(nèi)壁等(6)電力行業(yè):用于對電站鍋爐水冷壁管壁厚度進行測量等本文所設計的壁面清洗機器人屬于壁面爬行機器人在建筑行業(yè)中的運用,主要用于對建筑物玻璃以及光滑外壁的清洗。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 119709851.2 課題的目的與意義清洗工人搭乘吊籃、升降平臺或者直接腰系繩索,進行高空擦洗。雖然簡便易行,但勞動強度大,工作效率低,稍有不慎還就會出現(xiàn)墜落事故,造成傷亡,人工作業(yè)的效率也很低。隨著人類社會的不斷進步,科學技術的日益發(fā)展,人們對生活質(zhì)量和工作環(huán)境的要求越來越高,為了提高清洗效率并且把清洗工人從惡劣的工作環(huán)境中解脫出來,有待開發(fā)一種自動清洗作業(yè)系統(tǒng)。壁面清洗機器人是一種實用性很強的裝置。自從本世紀六十年代以來,爬壁機器人及其相關技術的研究受到了人們廣泛的關注,但是大都只是進行了一些實驗性質(zhì)的研究,其相關的理論分析還不成熟,結構設計雖然百花齊放,但真正能用于實際工作的卻很少。作為清洗用的爬壁機器人來說,其清洗工具具有簡單、重復的特點,比較適合機器人的自主工作,壁面清洗機器人是以清洗高層建筑為目的的壁面移動機器人,它的出現(xiàn)將會極大地降低高層建筑的清洗成本,改善工人的勞動環(huán)境,同時提高生產(chǎn)效率,也必將極大地推動清洗業(yè)的發(fā)展,帶來相當?shù)慕?jīng)濟效益和社會效益。因此,壁面清洗機器人具有良好的應用前景。1.3 國內(nèi)外壁面清洗機器人的研究現(xiàn)狀壁面清洗機器人是一種由兩部分組成的清洗用機器人,兩個組成部分分別是可以自由移動的本體以及本體上搭載的清洗系統(tǒng),由于壁面清洗機器人的本體機構是設計的主體,因此壁面清洗機器人與壁面移動機器人的發(fā)展有著很大的關聯(lián)。1.3.1 國外壁面清洗機器人的研究現(xiàn)狀壁面移動機器人是能夠在垂直的壁面上進行移動的一種機器人,在機械上有顯著成就的日本壁面移動機器人的研究方面尤其積極。1966 年,大阪府立大學工學部的講師西亮就已經(jīng)用電風扇的進氣一側的低壓空氣所產(chǎn)生的負壓來產(chǎn)生吸附力,從而制造了壁面移動機器人的原理樣機。1975 年,升為宮崎大學工學部教授的西亮制作了二號樣機,該樣機為單吸盤結構,并且使用輪子作為行走方式的爬壁機器人。1978 年,化工機械技術服務株式會社制造了名為 Walker的爬壁機器人,這個爬壁機器人使用單吸盤結構,用真空泵產(chǎn)生負壓來產(chǎn)生吸附力,由兩個滾子和兩條用來行走的皮帶組成行走機構,滾子和皮帶能夠形成真空的腔體。該爬壁機器人的轉向是由兩個滾子和皮帶的速度之間的差來完成的。該機器人由一個嚴重的缺點,當壁面上出現(xiàn)裂縫時,它的真空便很難維持。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985圖 1-1 Walker 機器人關西電力株式會社制造的履帶式壁面移動機器人利用均勻分布在履帶上及本體底部的吸盤來完成直線和轉向運動,但是越障能力較差。圖 1-2 履帶式壁面移動機器人日本日揮株式會社的佐藤多秀研發(fā)制造了一種利用負壓吸盤來吸附的雙吸盤結構輪式爬壁機器人,該機器人由前后兩個吸盤以及中間的本體結構組成。吸盤與壁面由密封的氣囊來接觸,該密封氣囊在機器人運動時能夠維持吸盤內(nèi)部的吸附壓力。在機器人的前后兩個吸盤上各自安裝有四個輪子,吸盤通過安裝在其內(nèi)部的輪子來進行吸附。前后兩端的輪子分別由一個電機來控制,通過同一個吸盤上的兩個電機的不同轉速來改變機器人的運動方向。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985圖 1-3 輪式壁面移動機器人日本宮崎大學研制的推力吸附機器人借鑒了航空航天的技術,利用螺旋槳或者涵道風扇來產(chǎn)生推力,從而讓機器人吸附在壁面上,并且吸附穩(wěn)定可靠。由于螺旋槳或涵道風扇所產(chǎn)生的推力是指向壁面的,因此該機器人能夠非常容易地跨越障礙。圖 1-4 推力吸附機器人概念模型日本東京消防廳所屬的消防科學研究所研究制造了一種用作急救的攀援機器人,該機器人是采用單吸盤的履帶式結構的爬壁機器人,通過履帶間的速度差來實現(xiàn)轉向功能。東京煤氣公司與日立制作所研發(fā)了一種用來檢查工作時的球形煤氣罐的焊縫的壁面爬行機器人,該機器人采用步行式的行走機構,機器人的內(nèi)外兩個框架上各自裝了八個帶吸盤的腳,由裝在腳上的氣缸來控制腳的下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985伸縮,兩個框架的相對運動是由直流伺服閥通過傳動機構來實現(xiàn)的,該結構具有帶負載能力強的優(yōu)點。日本國際機器人公司研發(fā)的名為空中勇士的壁面清洗機器人使用了腳步式的行走機構,該機器人由兩個本體組成,各自安裝有三只腳,三只腳可以進行伸縮運動,每只腳的端部都裝有吸盤,通過兩個本體上的腳的交互吸附來實現(xiàn)機器人的移動。英國的樸茨茅斯大學研制了名為 Robug 的爬壁機器人,該機器人的腳借鑒了蜘蛛腳的結構,每個腳上都裝有吸盤,通過吸盤吸附壁面從而在壁面上進行移動。Robug III 型爬壁機器人有八只腳,在每只腳上都安裝了微處理器和吸盤。采用氣缸對腳進行驅(qū)動。該機器人與其它機器人最大的不同是每條腿上都裝有控制器,通過對機器人的遠程遙控可以控制機器人往任何方向移動。另外樸茨茅斯大學還設計了 Bigfoot、Toad、The Nero Series Vehicles、Tribot 等多種壁面爬行機器人,這些壁面爬行機器人都是根據(jù)使用要求的不同而被設計出來的。圖 1-5 Robug III 機器人意大利卡塔尼亞大學研發(fā)制造的 Alicia 系列機器人是用來對壁面進行檢測的爬壁機器人,其中 Alicia2 型機器人由一個吸盤和兩個輪子所組成,吸盤的作用是對壁面進行吸附,使用兩個直流電機來控制兩個輪子,從而能夠使轉向更加的靈活。該爬壁機器人最大的缺點就是越障能力較差,而 Alicia3 型機器人正是由于越障能力差這種缺點而被開發(fā)出來的,該型號機器人由三個 Alicia2 型機器人組成,兩兩間用一根桿來連接,要進行越障動作時其中兩個機器人吸附另外一個機器人抬起便能輕松地實現(xiàn)越障功能。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985圖 1-6 Alicia3 機器人1986 年,美國國際機器人公司研發(fā)制造了名為 SkyWasher 的壁面爬行機器人,該機器人用來對摩天大樓進行清洗。它由兩組 L 型的框架相對地進行滑動以及交替地吸附來實現(xiàn)移動功能,在每組框架上都裝有三個腳掌,每個腳掌上還安裝有兩個真空吸盤,真空吸盤能夠與壁面進行相對的直線運動,該機器人還可以實現(xiàn)橫向的移動,并且具有一定的越障能力。圖 1-7 SkyWasher 機器人1990 年,美國的卡內(nèi)基梅隆大學的 Wolfe 研發(fā)制造了一種以十字幾何結構為基礎的直動式壁面移動機器人 ANDI。該機器人采用了由龍骨和橫梁構成的十字構型,在簡化結構的同時提高了爬壁機器人的工作效率。機器人的橫梁沿著龍骨滑動并且通過足部的吸盤對壁面交替進行吸附來實現(xiàn)梁式行走,在橫梁+下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985上裝有渦流探測器,能夠起到檢測的作用,在橫梁沿著龍骨運動的同時能夠使探測器對壁面進行掃描。這種機器人還裝有四個攝像頭,沿著龍骨排成一排,四個攝像頭中緊鄰探測器的攝像頭為廣角鏡頭并且處在最高的位置,能夠在監(jiān)控機器人的同時進行導航和避開障礙等動作。這種機器人第一次將十字構型用到機器人結構當中,這種結構不僅能夠?qū)崿F(xiàn)爬壁機器人的移動和越障功能,更能夠簡化控制的算法,從而提高爬壁機器人的工作效率和工作可靠性。圖 1-8 ANDI 爬壁機器人德國的 Fraunhofer 研究所研發(fā)制造的 SIRIUSC 壁面清洗機器人在工作時在機器人工作的建筑物的頂部有一個隨動小車,這個小車除了起到安全的作用外,還能夠?qū)Ρ诿媲逑礄C器人的側向移動進行控制,由于該壁面清洗機器人只有上下運動的功能,隨動小車則用來控制機器人的左右運動。該機器人的移動機構是由兩個線性模塊組成的,在每個模塊上都安裝了真空吸盤,模塊采用伺服電機進行控制。圖 1-9 SIRIUSC 壁面清洗機器人下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985從 1990 年開始,西班牙的 CSIC 大學的工業(yè)自動化研究所研發(fā)制造了兩種不同的磁吸附壁面爬行機器人。一種是推進式壁面爬行機器人,該機器人由兩個運動鏈所組成,運動鏈的末端有兩個電磁吸附元件。該機器人由三個關節(jié)組成,每個關節(jié)由一個直流電機和齒輪進行驅(qū)動,最大旋轉角速度為 130 度/秒,運動鏈的長度為 200 毫米,機器人本體重 6 千克。另一種是名為 REST 的壁面爬行機器人,該機器人有六條腿,每條腿由電機和齒輪進行驅(qū)動,機器人的控制器裝在本體上。圖 1-10 REST 爬壁機器人加拿大的 University of British Columbia 研發(fā)制造的名為 Window Washer 的爬壁機器人主要用于清洗玻璃窗,該機器人也采用了十字構型,其水平臂和垂直臂呈十字形分布,通過電機的驅(qū)動來實現(xiàn)兩個方向的運動,水平臂和垂直臂上都安裝有吸盤組,通過吸盤組交替進行吸附與兩臂的相對運動機器人能夠?qū)崿F(xiàn)垂直方向和水平方向的移動,機器人有四個圓盤刷,兩個一組分別安裝于垂直臂的兩端,機器人沿著垂直方向運動時對壁面或玻璃進行清洗。該機器人的吸附方式采用了用電動來驅(qū)動的真空吸附式,能夠改善采用全氣動的驅(qū)動方式的機器人的氣動位置的伺服精度以及驅(qū)動力不夠的問題。圖 1-11 Window Washer 機器人下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 119709851.3.2 國內(nèi)壁面清洗機器人的研究現(xiàn)狀在我們國家從七十年代的初期開始研究以及開發(fā)機器人,1975 年,川崎重工業(yè)公司在北京舉辦的日本科技展覽會上展出了 Unimate-2000 型的搬運機器人,從此在我國便掀起了第一個機器人的研究浪潮,許多單位都開始了對機器人的研制。哈爾濱工業(yè)大學的機器人研究所研發(fā)設計了我國的第一臺爬壁式遙控檢查機器人,它主要用來對核廢料儲罐的安全情況進行檢查,該機器人的特點為用了一種稱為“全方位輪”的新結構輪子作為行走的機構,這是瑞典的MECANUM 公司的全新的技術。哈爾濱工業(yè)大學從 1988 年起研發(fā)制造了兩種壁面爬行機器人,1996 年研發(fā)成功的多功能履帶式罐壁噴涂檢測磁吸附爬壁機器人是針對石油企業(yè)的儲油和儲水鋼罐定期噴砂除銹、噴漆防腐及涂層厚度等進行檢測工作而研發(fā)制作的;哈爾濱工業(yè)大學所研發(fā)制造的另外一種機器人是一種單吸盤的輪式爬壁機器人,該機器人為真空吸附式,并且采用了全方位的車輪結構,在機器人本體的方向位置不改變的狀況下可以沿著任意的直線方向進行運動,這種機器人本體重量為 20 千克,能夠負載 15 千克,移動速度為 0-2 米/分鐘,控制系統(tǒng)采用了微機控制與遙控。圖 1-12 多功能履帶式罐壁噴涂檢測磁吸附爬壁機器人圖 1-13 單吸盤輪式驅(qū)動爬壁機器人下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985北京航空航天大學從 1996 年開始先后研發(fā)制造了WHSHMAN、CLEANBOT、SKYCLEAN、靈巧型擦窗機器人、吊籃式擦窗機器人以及藍天潔寶等等一系列的清洗機器人,前三種壁面清洗機器人都是全氣動式的自主步行移動清洗機器人,采用了十字框架結構,機器人上所有的部件都是由氣缸來驅(qū)動的,十字框架結構由兩個無桿氣缸組成,這樣的壁面清洗機器人有著結構緊湊的特點。機器人在可以伸縮的腿部上裝有真空吸盤,能夠通過腿部交替的吸附以及氣缸的運動在玻璃幕墻或壁面上進行橫向或者縱向的運動以及實現(xiàn)越障功能。CLEANBOT 和 SKYCLEANER 這兩種清洗機器人在兩個主要氣缸之間設置了腰關節(jié),在機器人發(fā)生偏斜的時候能夠通過糾偏運動讓機器人回到正常運動的狀態(tài),SKYCLEANER 機器人的腿部與吸盤采用了微動鉸鏈連接,可以克服玻璃面上的二度折角變化。靈巧型擦窗機器人重量只有20kg,尺寸為 0.4m×0.8m×0.2m(寬×長×高) 。吊籃式擦窗機器人通過模擬人類的手擦窗的動作來進行清洗作業(yè),藍天潔寶是一種被動式的清洗機器人,它具有結構簡單、工作效率高等特點。圖 1-14 WHSHMAN 機器人圖 1-15 CLEANBOT 機器人下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985圖 1-16 SKYCLEANER 機器人北京清華大學的機器人與自動化實驗室研發(fā)制作出名為 TH-ClimberI 的大型油罐的自動檢測系統(tǒng),該系統(tǒng)是以磁吸附式壁面爬行機器人作為載體的,在磁吸附式壁面爬行機器人的左右兩邊各自裝了兩個帶輪,兩個帶輪以前后分布,分別與安裝了永磁塊的履帶進行嚙合,從而組成了機器人的移動機構。這種機器人采用了以兩個后輪為主驅(qū)動輪的驅(qū)動方式,由一臺直流伺服電機通過諧波減速器來帶動后輪。在磁吸附式壁面爬行機器人的面對壁面的一邊安裝了渦流檢測組件,這種組件通過直流電機與同步帶機構來帶動渦流探頭在垂直于機器人運動路線的方向上來回地進行移動,通過繼電器及行程開關來實現(xiàn)機器人的轉向。這種機器人能夠自動糾正運動路線上的偏差并且識別出機器人當前所在的位置,是一種擁有一定智能的爬壁機器人。上海大學的特種機器人技術應用研究室研發(fā)制造了多真空吸盤的多層框架式壁面爬行機器人,這種機器人擁有三層框架,上下兩個框架都能夠與中間框架進行相對的直線運動,中間框架則可以帶動上框架一起與下框架作相對的旋轉運動,在上下兩個框架上分別安裝了四個真空吸盤,可以通過上下框架的吸盤的交替吸附實現(xiàn)機器人在壁面上的移動,該機器人的最大移動速度為7m/min,機器人本體重量為 50kg,負載能力為 55kg,能夠越過高為 60mm 的高度,控制系統(tǒng)采用了無線射頻的遙控操作。浙江工業(yè)大學的機電學院正在自行研發(fā)一種以氣動柔性驅(qū)動器為基礎的小型多吸盤式壁面爬行機器人,這種壁面爬行機器人采用真空吸附,可以實現(xiàn)在平地或壁面上進行直線或彎曲的爬行。該機器人的結構主要由驅(qū)動裝置、吸附裝置以及提升裝置構成。吸附裝置包括五個吸盤以及相同數(shù)量的真空發(fā)生器,運動時保持三個以上的吸盤同時進行吸附。香港城市大學研制了一種十字架構的全氣動式爬壁機器人,這種壁面爬行機器人由壁面爬行機器人本體、供應小車、空壓機以及控制器組成,本體長度為 1220mm,寬為 1340mm,高度為 370mm,機器人本體重量為 30kg。該機器下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985人的本體由兩個垂直正交的氣缸所組成,通過兩個垂直正交的氣缸的伸縮來實現(xiàn)機器人在各個方向上的移動,這種機器人還有一個由擺動氣缸所組成的腰關節(jié),用來校正方向上的誤差。在機器人的水平和垂直氣缸的端部安裝有 4 個垂直于壁面的氣缸作為機器人的腿部,通過機器人的 4 條退的伸縮來完成機器人的越障動作。機器人的清洗裝置安裝在水平氣缸的兩側,清洗裝置能夠通過水平氣缸的伸縮運動來實現(xiàn)對左右方向的清洗工作。機器人的每條腿上都安裝有4 個吸盤,機器人通過這些吸盤對壁面進行吸附,從而保證機器人不會滑落。機器人可以通過由一個 CCD 攝像機和兩個激光二極管所組成的視覺系統(tǒng)來測量其本體與窗戶的相對位置,視覺系統(tǒng)還具有識別工作表面的衛(wèi)生情況以及確定要清洗的位置的功能。這種機器人由于采用了十字架構以及真空吸附,并且采用氣壓來進行驅(qū)動,因此結構簡單,靈活性好,但是存在著清洗的盲區(qū),以及整體的剛性比較差等缺點。圖 1-17 十字型架構的全氣動式爬壁機器人1.4 課題主要內(nèi)容及技術參數(shù)課題主要內(nèi)容:(1)完成壁面移動機構設計和相關計算,真空吸附、氣壓驅(qū)動的框架式結構的設計,清洗作業(yè)裝置的設計;(2)氣動系統(tǒng)的設計;(3)PLC 控制系統(tǒng)設計。壁面清洗機器人的技術參數(shù)列表:(1)爬行速度:4-10m/min(2)爬行高度:0-100m下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985(3)清洗速率:100-150mz/h(4)越障高度:50mm(5)控制方式:PLC 控制(6)本體重量:20kg(7)負載能力:15kg(8)移動方式:腳步移動式1.5 本章小結本章對課題的來源、目的與意義進行了介紹,對國內(nèi)外壁面清洗機器人的研究現(xiàn)狀進行了分析,并且列出了本課題的主要內(nèi)容和技術參數(shù)。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 119709852 壁面清洗機器人設計2.1 壁面清洗機器人的組成一個完整的壁面清洗機器人應該包含有本體以及控制兩個部分,其中本體結構又包括移動部分、吸附部分和清洗裝置。移動部分包括了壁面清洗機器人的行走與轉向,通過氣缸來控制機器人的行走,步進電機與蝸輪蝸桿則控制機器人的轉向;吸附部分由機器人腿部的吸盤組成,通過吸盤組來保證壁面清洗機器人在壁面上吸附的可靠性;清洗裝置包括了三相電機與圓盤刷,通過電機帶動圓盤刷轉動來起到清洗的目的??刂撇糠謩t采用了可編程控制器,也就是PLC 來對整個機器人的動作進行控制,以便達到控制簡單可靠的目的。壁面爬行機器人的主要功能分為移動及吸附功能,由于存在多種不同的移動方式與吸附方式,因此要對這些移動和吸附方式進行分析比較,從而選擇出最適合本課題的結構。表 2-1 壁面移動機器人的各種移動方式比較移動方式 優(yōu)點 缺點車輪式 移動速度快,行走控制簡單著地面積小,維持吸附力較困難履帶式 對壁面適應能力強,著地面積大體積大,結構復雜,轉彎比較困難,重量較大腳步式 對壁面適應能力、越障能力和帶載能力均較強移動速度慢,動作有間歇性,結構復雜,控制難度大框架式 結構簡單,剛性較好,控制方便,越障能力和帶載能力均較強移動速度慢,有間歇性表 2-2 壁面移動機器人的各種吸附方式比較吸附方式 優(yōu)點 缺點單吸盤真空吸附式 容易實現(xiàn)小型化、輕量化且結構簡單、容易控制要求壁面有一定的平滑度,越障能力低,不適應復雜壁面環(huán)境,遇到裂縫或凹凸面負壓難維持多吸盤真空吸附式 吸盤尺寸小,密封性較好,吸附穩(wěn)定可靠,越吸盤的增多會帶來結構的復雜化,控制的難度下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985障能力和帶載能力較強 也增加續(xù)表 2-2吸附方式 優(yōu)點 缺點永磁體磁吸附式 能產(chǎn)生較大的吸附力,不受壁面凹凸或裂縫的限制,不消耗電能,不受斷電的影響只能在導磁壁面上爬行,步行時磁體與壁面脫離需要較大的力電磁體磁吸附式 能產(chǎn)生較大的吸附力,不受壁面凹凸或裂縫的影響,控制比較方便只能在導磁壁面上爬行,維持吸附力需要耗能,電磁體本身重量很大推力吸附式 無泄漏問題,對壁面形狀、材料適應能力強負載小,難以控制,噪音很大,體積大效率低參照上表中對壁面清洗機器人的幾種移動方式與吸附方式的分析比較,這里采用了多吸盤框架式結構的壁面清洗機器人??蚣苁浇Y構比起其它幾種結構有著結構簡單、剛性較好、控制方便、越障能力與帶載能力較強等優(yōu)點。由于磁吸附式對壁面的材料有特殊要求,而推力吸附式又有著負載小、難控制、體積大等缺點,又因為多吸盤有著尺寸小、密封性好、吸附穩(wěn)定可靠、越障能力和帶載能力較強等優(yōu)點,因此這里采用了真空吸附式的多吸盤結構來實現(xiàn)吸附功能。2.2 行走機構的設計機器人的行走機構主要由 1 個平動氣缸與 6 個腿部氣缸來共同實現(xiàn)機器人的行走功能,機器人由兩個外形相似的框架組成,每個框架上安裝有三個提升氣缸,每個提升氣缸上則安裝有一組吸盤組,兩個框架中間還有一塊中間旋轉板,中間旋轉板上裝有一個平動氣缸與兩個導軌。當機器人要開始移動時,上框架的提升氣缸的吸盤脫離吸附,提升氣缸縮回,然后中間旋轉板上的平動氣缸伸出,帶動上框架沿著導軌的方向移動,氣缸完全伸出后,上框架的提升氣缸伸出,氣缸上的吸盤吸附住壁面,然后下框架的提升氣缸上的吸盤脫離吸附,提升氣缸縮回,中間旋轉板上的平動氣缸縮回,帶動下框架移動,平動氣缸完全縮回,下框架的提升氣缸伸出,氣缸上的吸盤吸附住壁面,這樣就完成了一次行走過程。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985圖 2-1 壁面清洗機器人的平動示意圖2.2.1 平動氣缸的設計與校核平動氣缸主要用來實現(xiàn)壁面清洗機器人的前后移動,它安裝在上下框架間的中間旋轉板上,由于機器人水平運動時氣缸的活塞桿會承受比較大的徑向力,因此在平動氣缸的兩邊分別安裝有一個與氣缸的活塞桿平行的導軌。圖 2-2 平動氣缸與導軌的位置關系圖(1)平動氣缸的受力分析機器人運動時平動氣缸有三種受力狀態(tài),分別是垂直向上爬行時,垂直向下爬行時與水平爬行時。1)垂直向上爬行時:當機器人垂直向上爬行時,平動氣缸有兩種受力情況,一種是下框架吸附時氣缸帶動上框架向上伸出,這時平動氣缸受到軸向的壓力 F。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985圖 2-3 垂直上爬下框架吸附時平動氣缸受力圖圖 2-3 中 F 為平動氣缸受到的軸向壓力。(2-1)(本 體 質(zhì) 量 /2負 載 質(zhì) 量 )9.8245N????垂直向上爬時的另外一種受力情況是上框架吸附時平動氣缸帶動下框架向上運動,這時氣缸的活塞桿承受拉力 F。圖 2-4 垂直上爬上框架吸附時平動氣缸受力圖圖 2-4 中 F 為平動氣缸的活塞桿所承受的拉力。(2-2)(本 體 質(zhì) 量 /2)9.8N???2)垂直向下爬行時:壁面清洗機器人在垂直向下爬行時,平動氣缸也有兩種不同的受力情況。一種是下框架吸附時平動氣缸帶動上框架向下運動,這時平動氣缸的活塞桿受到拉力 F。圖 2-5 垂直下爬下框架吸附時平動氣缸受力圖圖 2-5 中 F 為平動氣缸的活塞桿受到的拉力。 (本 體 質(zhì) 量 /2負 載 質(zhì) 量 )9.8245N????垂直向下爬行時的另外一種受力情況是上框架吸附時平動氣缸帶動下框架向下運動,這時氣缸的活塞桿受到壓力 F。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985圖 2-6 垂直下爬上框架吸附時平動氣缸受力圖圖 2-6 中 F 為平動氣缸的活塞桿受到的壓力。 (本 體 質(zhì) 量 /2)9.8N???3)水平運動時:壁面清洗機器人水平運動時,氣缸也處于水平狀態(tài),這時氣缸的伸縮只要克服徑向的摩擦力,由于導軌和氣缸的活塞桿都是光滑的,可以認為氣缸的活塞桿不受拉力和壓力,由徑向力產(chǎn)生的彎矩由兩邊的導軌來承受,這樣可以起到保護氣缸的作用。(2)平動氣缸的選型根據(jù)以上所作的受力分析來看,平動氣缸承受的最大拉力與最大壓力都為245N,因此選用雙作用單活塞桿氣缸,氣缸需要滿足以下式子:(2-3)24FDdPπ??式子中的 D 為活塞的直徑,d 為活塞桿的直徑,F(xiàn) 為氣缸承受的最大壓力,P 為工作壓力,這里取為 6bar。經(jīng)過選型這里選擇德國 Festo 公司的 DNG-40-250-PPV-A 型氣缸作為平動氣缸,型號中的 40 表示活塞直徑為 40mm,250 則表示行程為 250mm。氣缸的兩端有可調(diào)緩沖器,該氣缸在 6bar 工作壓力下的理論推力為 753N,理論返回力為 633N,比計算所得的最大壓力和最大拉力都大。氣缸重量為 1790g,氣接口為 G1/4,活塞桿上的螺紋為 M12×1.25。(3)平動氣缸的校核平動氣缸在壁面清洗機器人的運動過程中有兩種受力狀態(tài):受軸向的拉、壓力和受到徑向的彎矩。軸向的拉、壓力大約是機器人重量的一半,氣缸的活塞桿完全可以承受,因此需要校核平動氣缸所受到的徑向彎矩。機器人在水平移動時平動氣缸的活塞桿受到徑向力,為了提高抗彎強度,在平動氣缸的兩邊下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985分別設計了導軌和滑塊,用來分擔平動氣缸承受到的大部分彎矩。圖 2-7 平動氣缸彎矩校核計算圖如上圖所示, (a )圖為平動氣缸縮回時的受力圖, (b)圖為平動氣缸伸出時的受力圖,從圖中可以看出平動氣缸沒有受到扭矩的作用,因此只需要對彎矩進行校核。首先對(a)圖的狀態(tài)列出力和力矩方程,以作用力 N 的作用線上的某一點為基準,可得:(2-4)2FG??(2-5)11()L由式(2-5)可得: 1246.50.827GF????然后對(b)圖的狀態(tài)列出力和力矩方程,以 O 點位基準,可得:N?(2-6)213LG由式(2-4)可得: F??代入式(2-6)可得: 312()(5023.7)0.1846.LFG????(2-7)機器人總重為 35kg,G 為機器人重量的一半左右,因此 G 可以取 18N,F(xiàn)=0.18×18=32.4N,即平動氣缸的活塞桿所受的最大力為 32.4N,由選定氣缸的下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985行程為 250mm 可在圖 2-8 中查得所能承受的最大側向力為 45N,因此該氣缸滿足抗彎條件,可以使用。圖 2-8 Festo 氣缸側向力與行程關系圖2.2.2 腿部氣缸的設計與校核(1)腿部氣缸的受力分析本課題設計的壁面清洗機器人在上下框架上分別裝有三個提升氣缸,移動時主要作伸出時吸附于壁面以及縮回時脫離吸附這兩個動作,伸出和縮回時基本不承受任何的軸向力,但是承受一定的徑向力。氣缸伸出時徑向力較大,等于機器人的總重,從參數(shù)列表中得出機器人總重為 35kg,這個重量由機器人的提升氣缸承受;縮回時的徑向力由吸盤、吸盤支座及吸盤安裝板所產(chǎn)生,由于這些部件的重量很輕,因此徑向力較小。(2)腿部氣缸的選型腿部氣缸基本上不承受軸向的力,因此從行程和盡量輕的原則上來選型。本課題的腿部氣缸選擇了德國 Festo 公司的 DNC-40-50-PPV-A 型氣缸,型號中的 40 代表活塞的直徑為 40mm,50 代表氣缸的行程為 50mm,氣缸兩端有可調(diào)緩沖器,氣缸重量為 1025g,氣接口為 G1/4,活塞桿的螺紋為 M12×1.25,通過該螺紋實現(xiàn)氣缸與吸盤安裝板的連接。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985圖 2-9 腿部氣缸、吸盤與吸盤安裝板的安裝示意圖(3)腿部氣缸的校核通過上面的受力分析可以知道,腿部氣缸在伸出時承受機器人的總重,這時腿部氣缸主要承受彎矩,而在縮回時則主要承受吸盤、吸盤支座和吸盤安裝板等部件的重力所產(chǎn)生的彎矩和扭矩,要分別對彎矩和扭矩進行校核。1)彎矩校核:分析腿部氣缸伸出和縮回時的彎矩大小可以得知氣缸伸出時受到的彎矩要遠遠大于縮回時受到的彎矩,因此這里針對氣缸伸出時的彎矩進行校核。根據(jù)所選氣缸的型號可以得知腿部氣缸的行程為 50mm,查圖 2-8 得氣缸可以承受的最大側向力為 140N,當三個氣缸同時作用時能承受的最大側向力則為140×3=420N。壁面清洗機器人的總重為 35kg,完全可以滿足彎矩條件。2)扭矩校核:由于氣缸只在活塞桿縮回時才可能受到扭矩的作用,若受到扭矩的作用,該扭矩由吸盤、吸盤支架與吸盤安裝板產(chǎn)生?;钊麠U伸出時,至少有三個氣缸呈正三角形分布吸附,因此氣缸沒有受到扭矩的作用,這里要校核扭矩只需要對氣缸活塞桿伸出時的情況進行分析。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985圖 2-10 腿部氣缸力臂圖如圖 2-10 所示,MN 為一條鉛垂線,圖中的三個圓代表了三個吸盤,它們呈正三角形分布,O 點代表氣缸的軸心,A、B、C 三點代表把吸盤假象為一個質(zhì)點的位置,α 角為吸盤組順時針轉過的角度,r1 、r2、r3 為三個吸盤的力臂,假設每個吸盤以及吸盤支架的重量為 G,正三角形 ABC 的邊長為 a。則可得:1rOSinα aiα????(2-8)2(90)BHiα?(Diα?tan)α Cosα??(2-9326sα Siα?)3(90)rHinα???(CDiαta)2Oα osα?(2-36α Sinα??下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 1197098510)由式(2-8) 、 (2-9) 、 (2-10)可得: 132Grr??(2-11)由上式可以看出中心點 O 受到的扭矩為 0,因此氣缸的活塞桿所受的扭矩為 0,所選氣缸可以使用。2.3 轉向機構的設計本課題設計的壁面清洗機器人擁有轉向的功能,轉向機構由一個步進電機和一對蝸輪蝸桿的減速機構組成。一開始機器人的六個腿部氣缸都處于吸附狀態(tài),當開始轉動時,上框架脫離吸附,氣缸縮回,步進電機帶動蝸輪蝸桿轉動,蝸輪再帶動中間旋轉板和上框架一起轉動,轉動完畢后上框架的氣缸伸出吸附,這樣安裝在中間旋轉板上的平動氣缸與導軌也轉動了相同的角度,機器人便完成了一次轉動。圖 2-11 步進電機與蝸輪蝸桿安裝示意圖2.3.1 步進電機的選型本設計中的壁面清洗機器人是一個關于轉軸的中心對稱的結構,機器人在壁面進行工作時受到的轉動力矩很?。ㄖ挥心Σ廉a(chǎn)生的力矩) ,基本上可以忽略不計,在步進電機的選型上本設計選用了南京華興電機制造有限公司所生產(chǎn)的57BYG3504 型三相混合式步進電機,主要參數(shù)如下表:下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985表 2-3 步進電機參數(shù)列表型號 步距角相數(shù)驅(qū)動電壓(V)相電流(A)保持轉矩(N·m)空載起動頻率(步/秒)空載運行頻率(千步/秒)轉動慣量(Kg·cm2)相電感(mH)重量(Kg)57BYG35040.6°3 36 3 1.1 1600 ≥200.46 - 1.12.3.2 蝸輪蝸桿的設計與校核壁面清洗機器人的動力源為三相混合式步進電機,其中蝸桿與電動機直聯(lián),蝸輪通過蝸輪軸與中間旋轉板固接。(1)蝸桿的選型GB/T10085-1988 推薦采用漸開線蝸桿(ZI 蝸桿)和錐面包絡蝸桿(ZK 蝸桿) 。本設計采用結構簡單、制造方便的漸開線型圓柱蝸桿(ZI 蝸桿) 。(2)蝸桿副的材料壁面清洗機器人中的蝸桿副傳遞的功率不大,但蝸桿轉速較高,因此,蝸桿的材料選用 45 鋼,其螺旋齒面要求淬火,硬度為 45~55HRC,以提高表面耐磨性;蝸輪的轉速較低,其材料主要考慮耐磨性,選用鑄錫磷青銅ZcuSn10P1,采用金屬模鑄造。(3)蝸桿和蝸輪的主要參數(shù)與幾何尺寸取中心距 a=50mm,傳動比 i=82,模數(shù) m=1mm。蝸桿的參數(shù)與尺寸:頭數(shù) ,模數(shù) m=1mm,軸向齒距為:1z?(2-12)13.4aPπ mπ??軸向齒厚為:(2-13)0.5..57asπ π ?下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985分度圓直徑 ,直徑系數(shù)為:18dm?(2-14)1//18q?分度圓導程角為:(2-15)1arctn(/)arctn(/)30'47'γ z???取齒頂高系數(shù) ,徑向間隙系數(shù) ,則齒頂圓直徑為:*h*.2?1aadhm?81?(2-16)20齒根圓直徑為: *1()f adhc???8210.2?(2-17)5.6m蝸輪的參數(shù)與尺寸:齒數(shù) ,模數(shù) m=1mm,分度圓直徑為:28z?(2-18)2182dz???變位系數(shù)為: 212[()/]xadm??5081?(2-19)蝸輪喉圓直徑為: *22()aadhx??810?(2-20)4m蝸輪齒根圓直徑為: **22()f adhxc???下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985821(0.2)????(2-21)79.6m蝸輪咽喉母圓半徑為: 22/gard5084??(2-22)(4)校核蝸輪齒根彎曲疲勞強度由蝸桿頭數(shù) ,傳動比 i=82,可以算出蝸輪齒數(shù) 。1z 28z?則蝸輪的當量齒數(shù)為: 23VzCosγ?810'47'?(2-23)2.?根據(jù)蝸輪變位系數(shù) 和當量齒數(shù) ,查得齒形系數(shù)2x2.3Vz?,螺旋角影響系數(shù)為:2.3FaY?10.974β γY???(2-24)根據(jù)蝸輪的材料和制造方法,查得蝸輪的基本許用彎曲應力為: []'56Fσ MPa蝸輪的壽命系數(shù)為: 910FNK?692hjnL下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985691024.??(2-25).7蝸輪的許用彎曲應力為: [][]'FFNσ σ K?560.42?(2-26)1MPa蝸輪的齒根彎曲應力為: 21.3FFaβTσ Ydm?.5.962.30.978??(2-27)7.MP?可見, ,蝸輪齒根的彎曲強度滿足要求。[]Fσ σ ?2.4 吸附裝置的選取2.4.1 吸附可靠性分析壁面清洗機器人要可靠穩(wěn)定地吸附在壁面上需要克服兩個力:重力和傾覆力矩??朔亓Φ淖饔檬且贡诿媲逑礄C器人在重力的作用下不會滑落,克服傾覆力矩的作用是使壁面清洗機器人不會再傾覆力矩的作用下脫離吸附。綜合分析本設計中的壁面清洗機器人的結構及運動特點可以得出,上框架的氣缸縮回、下框架的氣缸吸附并且一個腿部氣缸在上、兩個腿部氣缸在下處于同一水平線上時最容易跌落,因此對這種狀態(tài)下的機器人的受力情況進行分析。下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985圖 2-12 壁面清洗機器人的受力分析圖上圖中 F 為吸盤組的真空吸附力,N 為壁面對吸盤組的法向推力,G 為壁面清洗機器人的總重力,f 為吸盤組受到的摩擦力, 為上面一組吸盤的幾何1L中心與后面兩組吸盤的幾何中心的連線的垂直距離, 為壁面清洗機器人以及2負載的等效中心與壁面的距離。壁面清洗機器人能夠可靠吸附壁面的條件是重力要比最大靜摩擦力小,根據(jù)摩擦力的特性,在一般的工作情況下,最大靜摩擦力比滑動摩擦力大,為了防止壁面清洗機器人從壁面上滑落,必須要滿足以下式子: 31iiGfη N???(2-28)上式中 f 為下框架所有吸盤組的總滑動摩擦力, 為吸盤對于壁面的滑動η摩擦系數(shù)。分析垂直于壁面方向與平行于壁面方向的受力情況,可以列出以下兩個力的平衡方程:(2-29)31()0iiiF??(2-30)iifG上面一組吸盤的幾何中心到下面兩組吸盤的幾何中心的連線的距離為 132Lr?(2-31)上式中 r 為三個吸盤組所在的圓的半徑。考慮到真空吸附力、壁面對吸盤的法向推力和重力可以列出以下力矩方程: 123()FNrGL???(2-32)下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985為了使計算更加簡單,這里假設每個吸盤組的真空度是相同的,這樣每個吸盤組受到的真空吸附力也是相同的,壁面對下面兩組吸盤的法向推力也是相同的,這樣可以得出 , ,代入式(2-32)可得:123FF?23N?21GLNr?(2-33)3F?把式(2-33)代入式(2-29)得: 123123NN??2()GLFr??13??(2-34)2LFr?吸盤要克服傾覆力矩保持不脫落要滿足 的條件。0iN?結合上述式子可以得出:(2-35)2GLFr?(2-36)13(2-37)Fη?上面三個式子為壁面清洗機器人在壁面上工作的可靠吸附條件,式(2-35) 、(2-36)為壁面清洗機器人不會傾覆的條件,式(2-37)為壁面清洗機器人在重力的作用下不會下滑的條件。2.4.2 吸附裝置的選取下載后包含有 CAD 圖紙和說明書,咨詢 Q 197216396 或 11970985(1)吸盤等吸附裝置的選取本設計中壁面清洗機器人的所有氣動元件都是德國 Festo 公司的產(chǎn)品,吸盤與建筑壁面的摩擦系數(shù)也是根據(jù) Festo 公司所提供的數(shù)據(jù)選取。本設計中選擇的吸盤材料為丁腈橡膠,考慮到壁面清洗機器人的工作表面為瓷磚或玻璃,相比瓷磚玻璃的摩擦系數(shù)更小,