函 數(shù) 綜 合 應(yīng) 用 一 精心選一選 1 已知點M到x軸的距離為1 到y(tǒng)軸的距離為2 且點M在第二象限 則點M的坐標為 A 2 1 B 2 1 C 1 2 D 1 2 2 函數(shù)y 的自變量x的取值范圍是 A x 0 B x 1 C x 0 D x 0且x 1 3 在反比例函數(shù)y。
甘肅省中考數(shù)學(xué)專題復(fù)習(xí)Tag內(nèi)容描述:
1、二 次 函 數(shù) 知識梳理 1 二次函數(shù)的解析式 1 一般式 2 頂點式 2 頂點式的幾種特殊形式 4 3 二次函數(shù)的圖像和性質(zhì) 0 y x O 0 圖 象 開 口 對 稱 軸 頂點坐標 最 值 當x 時 y有最 值 當x 時 y有最 值 增減性 在對稱軸。
2、函數(shù)及圖象 考點鏈接 一 平面直角坐標系 1 平面內(nèi)有公共原點且互相垂直的兩條數(shù)軸 構(gòu)成平面直角坐標系 在平面直角坐標系內(nèi)的點和有序?qū)崝?shù)對之間建立了 一對應(yīng)的關(guān)系 2 不同位置點的坐標的特征 1 各象限內(nèi)點的坐標有。
3、4 相似三角形 知識重溫 A D 1 相似的概念 相似形 我們把的 圖形叫做相似圖形 B C E F 相似多邊形 相似比 相似三角形 表示 2 相似三角形的性質(zhì) 1 相似三角形的 相等 2 相似三角形的對應(yīng)高的比 對應(yīng)中線的比與對應(yīng)角平。
4、函 數(shù) 綜 合 應(yīng) 用 一 精心選一選 1 已知點M到x軸的距離為1 到y(tǒng)軸的距離為2 且點M在第二象限 則點M的坐標為 A 2 1 B 2 1 C 1 2 D 1 2 2 函數(shù)y 的自變量x的取值范圍是 A x 0 B x 1 C x 0 D x 0且x 1 3 在反比例函數(shù)y。
5、3 圓中的計算問題 知識回顧 弧長 l 扇形面積 圖1 圖2 圖3 圖4 圓錐的側(cè)面積 圓錐的全面積 達標訓(xùn)練 1 已知扇形的半徑是12 cm 圓心角是60 則扇形的弧長是 2 圓錐的底面半徑為3cm 母線為9 則圓錐的側(cè)面積為 3 扇形的弧。
6、方程與不等式 課時5 一元二次方程強化 一 選擇題 每小題3分 共30分 1 一元二次方程的一般形式是 A ax2 bx c 0 B x2 bx c 0 C ax2 bx c D ax2 bx c 0 a 0 2 方程x2 6x 5 0左邊配成一個完全平方式后 所得的方程是 A x。
7、反比例函數(shù) 知識梳理 1 反比例函數(shù) 一般地 如果兩個變量x y之間的關(guān)系可以表示成 k為常數(shù) k 0 的形式 或y kx 1 k 0 那么稱y是x的反比例函數(shù) 2 反比例函數(shù)的概念需注意以下幾點 1 k為常數(shù) k 0 2 中分母x的指數(shù)為1 例。
8、2 與圓有關(guān)的位置關(guān)系 知識回顧 一 點與圓的位置關(guān)系 1 設(shè) O的半徑為r 點P到圓心的距離OP d 點P在圓外 點P在圓上 點P在圓內(nèi) 2 確定一個圓 3 外接圓 經(jīng)過三角形的 可以作一個圓 并且 畫一個圓 這個圓叫做三角形的外接。
9、1 圓的基本概念和性質(zhì) 知識回顧 1 垂徑定理 垂徑定理的推論 平分弦 的直徑 于弦 并且 2 弧 弦 弦心距 圓心角之間的關(guān)系 圓心角 的角叫做圓心角 同圓或等圓中 中 如果有一組量相等 則它們所對應(yīng)的其余各組量也相等 3。
10、一 次 函 數(shù) 知識梳理 1 一次函數(shù)的意義及其圖象和性質(zhì) 1 一次函數(shù) 若兩個變量x y間的關(guān)系式可以表示成 k b為常數(shù) k 0 的形式 則稱y是x的一次函數(shù) x是自變量 y是因變量 特別地 當b 時 稱y是x的正比例函數(shù) 2 一次函數(shù)。
11、方程與不等式 課時1 一次方程 組 1 若是二元一次方程 則 A B C D 2 二元一次方程的正整數(shù)解有 個 A 1 B 2 C 3 D 4 3 若方程是關(guān)于的二元一次方程 則的值為 A B 3 C 3 D 9 4 一種蜂王精有大小兩種包裝 3大盒4小盒共裝。
12、方程與不等式 課時3 分式方程 1 把方程的兩邊同時乘以 x 2 約去分母 得 A 1 1 x 1 B 1 1 x 1 C 1 1 x x 2 D 1 1 x x 2 2 方程的根是 A 2 B C 2 D 2 1 3 當 時 方程的根為 4 如果 則 A B 5 若方程有增根 則增根為 a 6。
13、3 三角形 等腰三角形 等邊三角形 知識點 A 1 三角形的概念及相關(guān) 表示方法 C B 三線 高線 中線 角平分線 中位線 2 三角形基本性質(zhì) 三邊關(guān)系 1 內(nèi)角和定理 三角形三個內(nèi)角之和為 推論 直角三角形兩銳角 外角性質(zhì) 1 三。
14、四邊形 知識點1 多邊形 平行四邊形的性質(zhì)和判定 知識梳理 1 多邊形內(nèi)角和定理 n邊形內(nèi)角和等于 2 n邊形的外角和等于 n邊形的對角線共有 條 3 平行四邊形定義 兩組對邊分別平行的四邊形叫平行四邊形 4 平行四邊形的性。
15、方程與不等式綜合檢測題 一 選擇題 每小題3分 滿分24分 1 已知關(guān)于的方程的解滿足 則的值為 A B C D 2 已知兩數(shù)之和為10 且比的3倍大2 則下面所列出的方程組正確的為 A B C D 3 下列方程中 有實數(shù)根的為 A B C D 4。
16、三角形 一 選擇題 1 下面給出的幾種三角形 1 有兩個角為60的三角形 2 三個外角都相等的三角形 3 一邊上的高也是這邊上的中線的等腰三角形 4 有一個角為60的等腰三角形 其中一定是等邊三角形的有 A 4個 B 3個 C 2個。